An easy-to-use tool for training Pytorch deep learning models
Project description
DeepEpochs
Pytorch深度学习模型训练工具。
安装
pip install deepepochs
使用
数据要求
- 训练集、验证集和测试集是
torch.utils.data.Dataloader
对象 Dataloaer
中每个mini-batch数据是一个tuple
或list
,其中最后一个是标签- 如果数据不包含标签,则请将最后一项置为
None
- 如果数据不包含标签,则请将最后一项置为
指标计算
- 每个指标是一个函数
- 它有两个参数,分别为模型的预测结果和标签
- 返回值为当前mini-batch上的指标值
常规训练流程
from deepepochs import Trainer, CheckCallback, rename
import torch
from torch import nn
from torch.nn import functional as F
from torchvision.datasets import MNIST
from torchvision import transforms
from torch.utils.data import DataLoader, random_split
from torchmetrics import functional as MF
# datasets
data_dir = './dataset'
transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,))])
mnist_full = MNIST(data_dir, train=True, transform=transform, download=True)
train_ds, val_ds, _ = random_split(mnist_full, [5000, 5000, 50000])
test_ds = MNIST(data_dir, train=False, transform=transform, download=True)
# dataloaders
train_dl = DataLoader(train_ds, batch_size=32)
val_dl = DataLoader(val_ds, batch_size=32)
test_dl = DataLoader(test_ds, batch_size=32)
# pytorch model
channels, width, height = (1, 28, 28)
model = nn.Sequential(
nn.Flatten(),
nn.Linear(channels * width * height, 64),
nn.ReLU(),
nn.Dropout(0.1),
nn.Linear(64, 64),
nn.ReLU(),
nn.Dropout(0.1),
nn.Linear(64, 10)
)
def acc(preds, targets):
return MF.accuracy(preds, targets, task='multiclass', num_classes=10)
@rename('')
def multi_metrics(preds, targets):
return {
'p': MF.precision(preds, targets, task='multiclass', num_classes=10),
'r': MF.recall(preds, targets, task='multiclass', num_classes=10)
}
checker = CheckCallback('loss', mode='min', patience=2)
opt = torch.optim.Adam(model.parameters(), lr=2e-4)
trainer = Trainer(model, F.cross_entropy, opt=opt, epochs=100, metrics=[acc, multi_metrics], callbacks=checker)
progress = trainer.fit(train_dl, val_dl)
test_rst = trainer.test(test_dl)
非常规训练流程
- 方法1:
- 第1步:继承
deepepochs.Callback
类,定制满足需要的Callback
- 第2步:使用
deepepochs.Trainer
训练模型,将定制的Callback
对象作为Trainer
的callbacks
参数
- 第1步:继承
- 方法2:
- 第1步:继承
deepepochs.TrainerBase
类,定制满足需要的Trainer
,实现train_step
方法和evaluate_step
方法 - 第2步:调用定制
Trainer
训练模型。
- 第1步:继承
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
deepepochs-0.2.11.tar.gz
(17.0 kB
view details)
Built Distribution
File details
Details for the file deepepochs-0.2.11.tar.gz
.
File metadata
- Download URL: deepepochs-0.2.11.tar.gz
- Upload date:
- Size: 17.0 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.6.0 importlib_metadata/4.8.2 pkginfo/1.8.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.12
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | f40c425e5276c44622b0e4583072c762ec92395ee7c1ce01383cc420aba1b61f |
|
MD5 | 571637fd9a9e1f5c6724c70a248b6948 |
|
BLAKE2b-256 | 08e61dd0b711aeb743812629ffddb94572f3bd94829d572b6847e7016201486f |
File details
Details for the file deepepochs-0.2.11-py3-none-any.whl
.
File metadata
- Download URL: deepepochs-0.2.11-py3-none-any.whl
- Upload date:
- Size: 17.0 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.6.0 importlib_metadata/4.8.2 pkginfo/1.8.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.12
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 91e5c87bf0757e95c9aec466978cf7e0497d5826bb42d1c1113e981527732e58 |
|
MD5 | 3e429d5d4416e21a739d0cb740d91018 |
|
BLAKE2b-256 | 265bb6057849d05cf1ce3cfbda0cf2633b62bf770f4fcefe8cf3efda4f294ce4 |