Skip to main content

An easy-to-use tool for training Pytorch deep learning models

Project description

DeepEpochs

Pytorch深度学习模型训练工具。

安装

pip install deepepochs

使用

数据要求

  • 训练集、验证集和测试集是torch.utils.data.Dataloader对象
  • Dataloaer中每个mini-batch数据是一个tuplelist,其中最后一个是标签
    • 如果数据不包含标签,则请将最后一项置为None

指标计算

  • 每个指标是一个函数
    • 它有两个参数,分别为模型的预测结果和标签
    • 返回值为当前mini-batch上的指标值

常规训练流程

from deepepochs import Trainer, CheckCallback, rename
import torch
from torch import nn
from torch.nn import functional as F
from torchvision.datasets import MNIST
from torchvision import transforms
from torch.utils.data import DataLoader, random_split
from torchmetrics import functional as MF

# datasets
data_dir = './dataset'
transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,))])
mnist_full = MNIST(data_dir, train=True, transform=transform, download=True)
train_ds, val_ds, _ = random_split(mnist_full, [5000, 5000, 50000])
test_ds = MNIST(data_dir, train=False, transform=transform, download=True)

# dataloaders
train_dl = DataLoader(train_ds, batch_size=32)
val_dl = DataLoader(val_ds, batch_size=32)
test_dl = DataLoader(test_ds, batch_size=32)

# pytorch model
channels, width, height = (1, 28, 28)
model = nn.Sequential(
    nn.Flatten(),
    nn.Linear(channels * width * height, 64),
    nn.ReLU(),
    nn.Dropout(0.1),
    nn.Linear(64, 64),
    nn.ReLU(),
    nn.Dropout(0.1),
    nn.Linear(64, 10)
)

def acc(preds, targets):
    return MF.accuracy(preds, targets, task='multiclass', num_classes=10)

@rename('')
def multi_metrics(preds, targets):
    return {
        'p': MF.precision(preds, targets, task='multiclass', num_classes=10),
        'r': MF.recall(preds, targets, task='multiclass', num_classes=10)
        }

checker = CheckCallback('loss', mode='min', patience=2)
opt = torch.optim.Adam(model.parameters(), lr=2e-4)
trainer = Trainer(model, F.cross_entropy, opt=opt, epochs=100, metrics=[acc, multi_metrics], callbacks=checker)

progress = trainer.fit(train_dl, val_dl)
test_rst = trainer.test(test_dl)

非常规训练流程

  • 方法1:
    • 第1步:继承deepepochs.Callback类,定制满足需要的Callback
    • 第2步:使用deepepochs.Trainer训练模型,将定制的Callback对象作为Trainercallbacks参数
  • 方法2:
    • 第1步:继承deepepochs.TrainerBase类,定制满足需要的Trainer,实现train_step方法和evaluate_step方法
    • 第2步:调用定制Trainer训练模型。

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

deepepochs-0.2.11.tar.gz (17.0 kB view details)

Uploaded Source

Built Distribution

deepepochs-0.2.11-py3-none-any.whl (17.0 kB view details)

Uploaded Python 3

File details

Details for the file deepepochs-0.2.11.tar.gz.

File metadata

  • Download URL: deepepochs-0.2.11.tar.gz
  • Upload date:
  • Size: 17.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.6.0 importlib_metadata/4.8.2 pkginfo/1.8.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.12

File hashes

Hashes for deepepochs-0.2.11.tar.gz
Algorithm Hash digest
SHA256 f40c425e5276c44622b0e4583072c762ec92395ee7c1ce01383cc420aba1b61f
MD5 571637fd9a9e1f5c6724c70a248b6948
BLAKE2b-256 08e61dd0b711aeb743812629ffddb94572f3bd94829d572b6847e7016201486f

See more details on using hashes here.

File details

Details for the file deepepochs-0.2.11-py3-none-any.whl.

File metadata

  • Download URL: deepepochs-0.2.11-py3-none-any.whl
  • Upload date:
  • Size: 17.0 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.6.0 importlib_metadata/4.8.2 pkginfo/1.8.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.12

File hashes

Hashes for deepepochs-0.2.11-py3-none-any.whl
Algorithm Hash digest
SHA256 91e5c87bf0757e95c9aec466978cf7e0497d5826bb42d1c1113e981527732e58
MD5 3e429d5d4416e21a739d0cb740d91018
BLAKE2b-256 265bb6057849d05cf1ce3cfbda0cf2633b62bf770f4fcefe8cf3efda4f294ce4

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page