An easy-to-use tool for training Pytorch deep learning models
Project description
DeepEpochs
Pytorch深度学习模型训练工具。
安装
pip install deepepochs
使用
数据要求
- 训练集、验证集和测试集是
torch.utils.data.Dataloader
对象 Dataloaer
所构造的每个mini-batch数据(collate_fn
返回值)是一个tuple
或list
,其中最后一个是标签- 如果训练中不需要标签,则需将最后一项置为
None
- 如果训练中不需要标签,则需将最后一项置为
指标计算
- 每个指标是一个函数
- 有两个参数,分别为模型预测和数据标签
- 返回值为当前mini-batch上的指标值
常规训练流程应用示例
from deepepochs import Trainer, CheckCallback, rename, EpochTask, LogCallback
import torch
from torch import nn
from torch.nn import functional as F
from torchvision.datasets import MNIST
from torchvision import transforms
from torch.utils.data import DataLoader, random_split
from torchmetrics import functional as MF
# datasets
data_dir = './datasets'
transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,))])
mnist_full = MNIST(data_dir, train=True, transform=transform, download=True)
train_ds, val_ds, _ = random_split(mnist_full, [5000, 5000, 50000])
test_ds = MNIST(data_dir, train=False, transform=transform, download=True)
# dataloaders
train_dl = DataLoader(train_ds, batch_size=32)
val_dl = DataLoader(val_ds, batch_size=32)
test_dl = DataLoader(test_ds, batch_size=32)
# pytorch model
channels, width, height = (1, 28, 28)
model = nn.Sequential(
nn.Flatten(),
nn.Linear(channels * width * height, 64),
nn.ReLU(),
nn.Dropout(0.1),
nn.Linear(64, 64),
nn.ReLU(),
nn.Dropout(0.1),
nn.Linear(64, 10)
)
def acc(preds, targets):
return MF.accuracy(preds, targets, task='multiclass', num_classes=10)
@rename('')
def multi_metrics(preds, targets):
return {
'p': MF.precision(preds, targets, task='multiclass', num_classes=10),
'r': MF.recall(preds, targets, task='multiclass', num_classes=10)
}
checker = CheckCallback('loss', on_stage='val', mode='min', patience=2)
opt = torch.optim.Adam(model.parameters(), lr=2e-4)
trainer = Trainer(model, F.cross_entropy, opt=opt, epochs=5, callbacks=checker, metrics=[acc])
# 应用示例1:
progress = trainer.fit(train_dl, val_dl, metrics=[multi_metrics])
test_rst = trainer.test(test_dl)
# 应用示例2:
# t1 = EpochTask(train_dl, metrics=[acc])
# t2 = EpochTask(val_dl, metrics=[multi_metrics], do_loss=True)
# progress = trainer.fit(train_tasks=t1, val_tasks=t2)
# test_rst = trainer.test(tasks=t2)
# 应用示例3:
# t1 = EpochTask(train_dl, metrics=[acc])
# t2 = EpochTask(val_dl, metrics=[acc, multi_metrics], do_loss=True)
# progress = trainer.fit(train_dl, val_tasks=[t1, t2])
# test_rst = trainer.test(tasks=[t1, t2])
非常规训练流程
- 方法1:
- 第1步:继承
deepepochs.Callback
类,定制满足需要的Callback
- 第2步:使用
deepepochs.Trainer
训练模型,将定制的Callback
对象作为Trainer
的callbacks
参数
- 第1步:继承
- 方法2:
- 第1步:继承
deepepochs.TrainerBase
类,定制满足需要的Trainer
,实现step
、train_step
、val_step
、test_step
或evaluate_step
方法- 这些方法有三个参数
batch_x
: 一个mini-batch的模型输入数据batch_y
: 一个mini-batch的标签**step_args
:可变参数字典,包含do_loss
、metrics
等参数
- 返回值为字典
- key:指标名称
- value:
DeepEpochs.PatchBase
子类对象,可用的Patch有ValuePatch
: 根据每个batch指标均值(提前计算好)和batch_size,累积计算Epoch指标均值TensorPatch
: 保存每个batch模型预测输出及标签,根据指定指标函数累积计算Epoch指标均值MeanPatch
: 保存每个batch指标均值,根据指定指标函数累积计算Epoch指标均值ConfusionPatch
:累积计算基于混淆矩阵的指标- 也可以继承
PatchBase
定义新的Patch(存在复杂指标运算的情况下)PatchBase.add
方法PatchBase.forward
方法
- 这些方法有三个参数
- 第2步:调用定制
Trainer
训练模型。
- 第1步:继承
- 方法3:
- 第1步:继承
deepepochs.EpochTask
类,在其中定义step
、train_step
、val_step
、test_step
或evaluate_step
方法- 它们的定义方式与
Trainer
中的*step
方法相同 step
方法优先级最高,即可用于训练也可用于验证和测试(定义了step
方法,其他方法就会失效)val_step
、test_step
优先级高于evaluate_step
方法EpochTask
中的*_step
方法优先级高于Trainer
中的*_step
方法
- 它们的定义方式与
- 第2步:使用新的
EpochTask
任务进行训练- 将
EpochTask
对象作为Trainer.fit
中train_tasks
和val_tasks
的参数值,或者Trainer.test
方法中tasks
的参数值
- 将
- 第1步:继承
数据流图
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
deepepochs-0.4.9.tar.gz
(161.1 kB
view details)
Built Distribution
File details
Details for the file deepepochs-0.4.9.tar.gz
.
File metadata
- Download URL: deepepochs-0.4.9.tar.gz
- Upload date:
- Size: 161.1 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.6.0 importlib_metadata/4.8.2 pkginfo/1.8.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.12
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | beebed2077e73764edd20ad23fc81067f8611427d9acb1d72e4aa175f44393c8 |
|
MD5 | 94ab30d8b54231b3fe7c9cec413ee6c8 |
|
BLAKE2b-256 | 74e44838c7fde71fc9626bead1979e9df33e7d186728158aa267671edc81c8e2 |
File details
Details for the file deepepochs-0.4.9-py3-none-any.whl
.
File metadata
- Download URL: deepepochs-0.4.9-py3-none-any.whl
- Upload date:
- Size: 25.6 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.6.0 importlib_metadata/4.8.2 pkginfo/1.8.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.12
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 2b0a0f4b192840cc7f37f6a90877a19461b525893dbcea948b7fd7e2b540aafa |
|
MD5 | 0e461471f34cbf91b50d397320b25f63 |
|
BLAKE2b-256 | e8e74fc1ab38d5773533934b554ecffdfa64e9ebc9976adda0b9f44fba0629fc |