Skip to main content

Deep Face Analysis Framework for Face Recognition and Demography

Project description

deepface

Downloads

Deepface is a lightweight facial analysis framework including face recognition and demography (age, gender, emotion and race) for Python. You can apply facial analysis with a few lines of code. It plans to bridge a gap between software engineering and machine learning studies.

Installation

The easiest way to install deepface is to download it from PyPI.

pip install deepface

Face Recognition

Verify function under the DeepFace interface is used for face recognition.

from deepface import DeepFace
result = DeepFace.verify("img1.jpg", "img2.jpg")

print("Is verified: ", result["verified"])

Modern face recognition pipelines consist of 4 stages: detect, align, represent and verify. Deepface handles all these common stages in the background.

Each call of verification function builds a face recognition model from scratch and this is a costly operation. If you are going to verify multiple faces sequentially, then you should pass an array of faces to verification function to speed the operation up. In this way, complex face recognition models will be built once.

dataset = [
	['dataset/img1.jpg', 'dataset/img2.jpg'],
	['dataset/img1.jpg', 'dataset/img3.jpg']
]
result = DeepFace.verify(dataset)

Face recognition models

Face recognition can be handled by different models. Currently, VGG-Face , Google FaceNet, OpenFace and Facebook DeepFace models are supported in deepface. The default configuration verifies faces with VGG-Face model. You can set the base model while verification as illustared below. Accuracy and speed show difference based on the performing model.

vggface_result = DeepFace.verify("img1.jpg", "img2.jpg") #default is VGG-Face
#vggface_result = DeepFace.verify("img1.jpg", "img2.jpg", model_name = "VGG-Face") #identical to the line above
facenet_result = DeepFace.verify("img1.jpg", "img2.jpg", model_name = "Facenet")
openface_result = DeepFace.verify("img1.jpg", "img2.jpg", model_name = "OpenFace")
deepface_result = DeepFace.verify("img1.jpg", "img2.jpg", model_name = "DeepFace")

VGG-Face has the highest accuracy score but it is not convenient for real time studies because of its complex structure. FaceNet is a complex model as well. On the other hand, OpenFace has a close accuracy score but it performs the fastest. That's why, OpenFace is much more convenient for real time studies.

Similarity

These models actually find the vector embeddings of faces. Decision of verification is based on the distance between vectors. Distance could be found by different metrics such as Cosine Similarity, Euclidean Distance and L2 form. The default configuration finds the cosine similarity. You can alternatively set the similarity metric while verification as demostratred below.

result = DeepFace.verify("img1.jpg", "img2.jpg", model_name = "VGG-Face", distance_metric = "cosine")
result = DeepFace.verify("img1.jpg", "img2.jpg", model_name = "VGG-Face", distance_metric = "euclidean")
result = DeepFace.verify("img1.jpg", "img2.jpg", model_name = "VGG-Face", distance_metric = "euclidean_l2")

Facial Attribute Analysis

Deepface also offers facial attribute analysis including age, gender, emotion (including angry, fear, neutral, sad, disgust, happy and surprise)and race (including asian, white, middle eastern, indian, latino and black) predictions. Analysis function under the DeepFace interface is used to find demography of a face.

from deepface import DeepFace
demography = DeepFace.analyze("img4.jpg") #passing nothing as 2nd argument will find everything
#demography = DeepFace.analyze("img4.jpg", ['age', 'gender', 'race', 'emotion']) #identical to the line above
#demographies = DeepFace.analyze(["img1.jpg", "img2.jpg", "img3.jpg"]) #analyzing multiple faces same time

print("Age: ", demography["age"])
print("Gender: ", demography["gender"])
print("Emotion: ", demography["dominant_emotion"])
print("Race: ", demography["dominant_race"])

Streaming and Real Time Analysis

You can run deepface for real time videos as well. Calling stream function under the DeepFace interface will access your webcam and apply both face recognition and facial attribute analysis. Stream function expects a database folder including face images. VGG-Face is the default face recognition model and cosine similarity is the default distance metric similar to verify function. The function starts to analyze if it can focus a face sequantially 5 frames. Then, it shows results 5 seconds.

from deepface import DeepFace
DeepFace.stream("/user/database")

Even though face recognition is based on one-shot learning, you can use multiple face pictures of a person as well. You should rearrange your directory structure as illustrated below.

user
├── database
│   ├── Alice
│      ├── Alice1.jpg
│      ├── Alice2.jpg
│   ├── Bob
│      ├── Bob.jpg

BTW, you should use regular slash ( / ) instead of backslash ( \ ) in Windows OS while passing the path to stream function. E.g. DeepFace.stream("C:/User/Sefik/Desktop/database").

API

Deepface serves an API as well. You can clone /api/api.py and pass it to python command as an argument. This will get a rest service up.

python api.py

The both face recognition and facial attribute analysis are covered in the API. You are expected to call these functions as http post methods. Service endpoints will be http://127.0.0.1:5000/verify for face recognition and http://127.0.0.1:5000/analyze for facial attribute analysis. You should pass input images as base64 encoded string in this case. Here, you can find a postman project.

Playlist

Deepface is mentioned in this youtube playlist.

Disclaimer

Reference face recognition models have different type of licenses. This framework is just a wrapper for those models. That's why, licence types are inherited as well. You should check the licenses for the face recognition models before use.

Herein, OpenFace is licensed under Apache License 2.0. FB DeepFace and Facenet is licensed under MIT License. The both Apache License 2.0 and MIT license types allow you to use for commercial purpose.

On the other hand, VGG-Face is licensed under Creative Commons Attribution License. That's why, it is restricted to adopt VGG-Face for commercial use.

Support

There are many ways to support a project - starring⭐️ the GitHub repos is just one.

You can also support this project through Patreon.

Licence

Deepface is licensed under the MIT License - see LICENSE for more details.

Logo is created by Adrien Coquet. Licensed under Creative Commons: By Attribution 3.0 License.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

deepface-0.0.20.tar.gz (21.6 kB view details)

Uploaded Source

Built Distribution

deepface-0.0.20-py3-none-any.whl (27.2 kB view details)

Uploaded Python 3

File details

Details for the file deepface-0.0.20.tar.gz.

File metadata

  • Download URL: deepface-0.0.20.tar.gz
  • Upload date:
  • Size: 21.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/45.1.0 requests-toolbelt/0.9.1 tqdm/4.42.0 CPython/3.6.4

File hashes

Hashes for deepface-0.0.20.tar.gz
Algorithm Hash digest
SHA256 89397cda500c21abcb8a7a5d2ed0124724142bb023b76a5b54edb57c252f7166
MD5 2c301f55321319a3c9cc54912cfc3022
BLAKE2b-256 33086497452e8310cd6076050bdc2c383f0d896c45231c5c346408c931ed40a3

See more details on using hashes here.

File details

Details for the file deepface-0.0.20-py3-none-any.whl.

File metadata

  • Download URL: deepface-0.0.20-py3-none-any.whl
  • Upload date:
  • Size: 27.2 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/45.1.0 requests-toolbelt/0.9.1 tqdm/4.42.0 CPython/3.6.4

File hashes

Hashes for deepface-0.0.20-py3-none-any.whl
Algorithm Hash digest
SHA256 a7317b22df9b0b4bd080e5b931167cd45a257634827de078c5ae8f049a07ddc1
MD5 9e46e6170bd9ed740ef32aef6b515a87
BLAKE2b-256 961ee7e257da321ce8f8dd07c4dc09489aca4a8b071c35a299398f9f8dfc24c2

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page