Skip to main content

A Deep learning pipeline for segmentation of fluorescent labels in microscopy images

Project description

deepflash2

Official repository of DeepFLasH2 - a deep learning pipeline for segmentation of fluorescent labels in microscopy images.

CI PyPI Conda (channel only) Build fastai images

Why using deepflash2?

The best of two worlds: Combining state of the art deep learning with a barrier free environment for life science researchers.

  • End-to-end process for life science researchers

    • no coding skills required
    • free usage on Google Colab at no costs
    • easy deployment on own hardware
  • Rigorously evaluated deep learning models

    • Model Library
    • easy integration new (pytorch) models
  • Best practices model training

    • leveraging the fastai library
    • mixed precision training
    • learning rate finder and fit one cycle policy
    • advanced augementation
  • Reliable prediction on new data

    • Leveraging Baysian Uncertainties

Installing

You can use deepflash2 by using Google Colab. You can run every page of the documentation as an interactive notebook - click "Open in Colab" at the top of any page to open it.

  • Be sure to change the Colab runtime to "GPU" to have it run fast!
  • Use Firefox or Google Chrome if you want to upload your images.

You can install deepflash2 on your own machines with conda (highly recommended):

conda install -c matjesg deepflash2 

To install with pip, use

pip install deepflash2

If you install with pip, you should install PyTorch first by following the PyTorch installation instructions.

Using Docker

Docker images for deepflash2 are built on top of the latest pytorch image and fastai images. You must install Nvidia-Docker to enable gpu compatibility with these containers.

  • CPU only

docker run -p 8888:8888 matjesg/deepflash

  • With GPU support (Nvidia-Docker must be installed.) has an editable install of fastai and fastcore.

docker run --gpus all -p 8888:8888 matjesg/deepflash All docker containers are configured to start a jupyter server. deepflash2 notebooks are available in the deepflash2_notebooks folder.

For more information on how to run docker see docker orientation and setup and fastai docker.

Model Library

We provide a model library with pretrained model weights. Visit our model library documentation for information on the datasets of the pretrained models.

Creating segmentation masks with Fiji/ImageJ

If you don't have labelled training data available, you can use this instruction manual for creating segmentation maps. The ImagJ-Macro is available here.

Acronym

A Deep-learning pipeline for Fluorescent Label Segmentation that learns from Human experts

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

deepflash2-0.0.7.tar.gz (23.6 kB view details)

Uploaded Source

Built Distribution

deepflash2-0.0.7-py3-none-any.whl (22.5 kB view details)

Uploaded Python 3

File details

Details for the file deepflash2-0.0.7.tar.gz.

File metadata

  • Download URL: deepflash2-0.0.7.tar.gz
  • Upload date:
  • Size: 23.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/49.2.0.post20200714 requests-toolbelt/0.9.1 tqdm/4.47.0 CPython/3.8.3

File hashes

Hashes for deepflash2-0.0.7.tar.gz
Algorithm Hash digest
SHA256 39aee991ac257f3261879d15bbed4dff9d65c5aad1a58f2c8137b1620c712355
MD5 ca7ac63ed0b5b8dbd1142dc67cfeddee
BLAKE2b-256 ab48ab3403e624bcfafc8275c41292d3759aeca9311e664f5d53824aa630b3c9

See more details on using hashes here.

File details

Details for the file deepflash2-0.0.7-py3-none-any.whl.

File metadata

  • Download URL: deepflash2-0.0.7-py3-none-any.whl
  • Upload date:
  • Size: 22.5 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/49.2.0.post20200714 requests-toolbelt/0.9.1 tqdm/4.47.0 CPython/3.8.3

File hashes

Hashes for deepflash2-0.0.7-py3-none-any.whl
Algorithm Hash digest
SHA256 ffffba3c52d37264d73cf2db62a662fa31221fef859feb8b9b93e7b6a48d67e5
MD5 52b360796338ff11e5aea02374b15871
BLAKE2b-256 625a268f83e3bc200399353b7620644b5569f4371c8da636848dea44a2d59357

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page