An easy-to-use deep model for time series forecast
Project description
DeepForecast
An Easy-to-use Deep Model for Time Series Forecast
Methods
- STTF
- Seq2Seq
How to install
pip install deepforecast
How to use
Use STTF as an exapmle:
from tensorflow.keras.utils import plot_model
from deepforecast.features import SparseColumn, SequenceColumn
from deepforecast.models import STTF
attr_feats = ["age", "user", "platform"]
sequence_feats = ["history", "future"]
attr_columns = []
for feat in attr_feats:
col = SparseColumn(name=feat, vocab_size=10, embed_dim=8)
attr_columns.append(col)
sequence_columns = []
hist_col = SequenceColumn(name="history", num_seq=5, seq_steps=28, dim=1)
sequence_columns.append(hist_col)
fut_col = SequenceColumn(name="future", num_seq=4, seq_steps=7, dim=1)
sequence_columns.append(fut_col)
model = STTF(attr_columns, sequence_columns, attr_attention_embed_dim=12)
model.summary()
plot_model(model, show_shapes=True)
model.compile(optimizer="rmsprop",
loss=["mse", "mse"],
loss_weights=[0.2, 0.8],
metrics=["mse"])
Project details
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
deepforecast-0.0.3.tar.gz
(7.4 kB
view hashes)