DeepGOPlus function predictor
Project description
DeepGOPlus: Improved protein function prediction from sequence
DeepGOPlus is a novel method for predicting protein functions from protein sequences using deep neural networks combined with sequence similarity based predictions.
This repository contains script which were used to build and train the DeepGOPlus model together with the scripts for evaluating the model's performance.
Dependencies
- The code was developed and tested using python 3.7.
- To install python dependencies run:
pip install -r requirements.txt
- Install diamond program on your system (diamond command should be available)
Data
- http://deepgoplus.bio2vec.net/data/ - Here you can find the data used to train and evaluate our method.
- data.tar.gz - Data required to run predict.sh script
- data-cafa.tar.gz - CAFA3 challenge dataset
- data-2016.tar.gz - Dataset which is used to compare DeepGOPlus with GOLabeler and DeepText2GO
Installation
pip install deepgoplus
Running
- Download all the files from http://deepgoplus.bio2vec.net/data/data.tar.gz and place them into data folder
deepgoplus --data-root <path_to_data_folder> --in-file <input_fasta_filename>
Scripts
The scripts require GeneOntology in OBO Format.
- uni2pandas.py - This script is used to convert data from UniProt database format to pandas dataframe.
- deepgoplus_data.py - This script is used to generate training and testing datasets.
- deepgoplus.py - This script is used to train the model
- evaluate_*.py - The scripts are used to compute Fmax, Smin and AUPR
The online version of DeepGOPlus is available at http://deepgoplus.bio2vec.net/
Citation
If you use DeepGOPlus for your research, or incorporate our learning algorithms in your work, please cite: Maxat Kulmanov, Robert Hoehndorf; DeepGOPlus: Improved protein function prediction from sequence, Bioinformatics, https://doi.org/10.1093/bioinformatics/btz595
New version specifications
Current dependencies can be found in the requirements.txt file. The used Python version is 3.7.9. Current version of Tensorflow will require Cuda 10.1 and Cudnn 7.6.5
Updating
The following scripts must be run to update the model using the latest versions of the Gene Ontology (GO) and the SwissProt Database.
- update.py - This will download new releases of GO and SwissProt and train the model. If there are not new releases, the process will abort.
- new_evaluation.sh - This will compute Fmax, Smin and AUPR metrics.
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file deepgoplus-1.0.2.tar.gz
.
File metadata
- Download URL: deepgoplus-1.0.2.tar.gz
- Upload date:
- Size: 8.3 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.7.2
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | d61fce1626a1661d16b8e11178547a3dda45480b90da976b4fc38b2cc5941b47 |
|
MD5 | 99ab9d4015e321000477de449d389a84 |
|
BLAKE2b-256 | 4aaf8e3fe8163ab67f72dab9f7347e8db40517f6d9eaf0d11a2fbc05076eb653 |
File details
Details for the file deepgoplus-1.0.2-py3-none-any.whl
.
File metadata
- Download URL: deepgoplus-1.0.2-py3-none-any.whl
- Upload date:
- Size: 9.5 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.7.2
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 27032d6212d43cf595fdcb259a1fe07f2b19c0e679bfcedfa42d0397a3f795c5 |
|
MD5 | d1dbff676e7482104aebb47c75c845af |
|
BLAKE2b-256 | b1d99e51229ef4aef7387cd170700c377e151be923823f11716ceec986a72acf |