Skip to main content

An AI-powered platform for advancing deep learning research and applications, developed by DeepTrackAI.

Project description

Deeplay is a deep learning library in Python that extends PyTorch with additional functionalities focused on modularity and reusability. It facilitates the definition, training, and adjustment of neural networks by introducing dynamic modification capabilities for model components after their initial creation. Deeplay seeks to address the common issue of rigid and non-reusable modules in PyTorch projects by offering a system that allows for easy customization and optimization of neural network components.

Core Philosophy

The core philosophy of Deeplay is to enhance flexibility in the construction and adaptation of neural networks. It is built on the observation that PyTorch modules often lack reusability across projects, leading to redundant implementations. Deeplay enables properties of neural network submodules to be changed post-creation, supporting seamless integration of these modifications. Its design is based on a hierarchy of abstractions from models down to layers, emphasizing compatibility and easy transformation of components. This can be summarized aqs follows:

  • Enhance Flexibility: Neural networks defined using Deeplay should be fully adaptable by the user, allowing dynamic modifications to model components. This should be possible without the author of the model having to anticipate all potential changes in advance.
  • Promote Reusability: Deeplay components should be immediately reusable across different projects and models. This reusability should extend to both the components themselves and the modifications made to them.
  • Support Seamless Integration: Modifications to model blocks and components should be possible without the user worrying about breaking the model's compatibility with other parts of the network. Deeplay should handle these integrations automatically as far as possible.
  • Hierarchy of Abstractions: Neural networks and deep learning are fundamentally hierarchical, with each level of abstraction being mostly agnostic to the details of the levels below it. An application should be agnostic to which model it uses, a model should be agnostic to the specifics of the components it uses, a component should be agnostic to the specifics of the blocks it uses, and so on. Deeplay reflects this hierarchy in its design.

Deeplay Compared to Torch

Deeplay is designed as a superset of PyTorch, retaining compatibility with PyTorch code while introducing features aimed at improving modularity and customization. Unlike PyTorch's fixed module implementations, Deeplay provides a framework that supports dynamic adjustments to model architectures. This includes capabilities for on-the-fly property changes and a style registry for component customization. Users can easily transition between PyTorch and Deeplay, taking advantage of Deeplay's additional features without losing the familiarity and functionality of PyTorch.

Deeplay Compared to Lightning

While Deeplay utilizes PyTorch Lightning for simplifying the training loop process, it goes further by offering enhanced modularity for the architectural design of models. PyTorch Lightning focuses on streamlining and optimizing training operations, whereas Deeplay extends this convenience to the model construction phase. This integration offers users a comprehensive toolset for both designing flexible neural network architectures and efficiently managing their training, positioning Deeplay as a solution for more adaptive and intuitive neural network development.

Quick Start Guide

The following quick start guide is intended for complete beginners to understand how to use Deeplay, from installation to training your first model. Let's get started!

Installation

You can install Deeplay using pip:

pip install deeplay

or

python -m pip install deeplay

This will automatically install the required dependencies, including PyTorch and PyTorch Lightning. If a specific version of PyTorch is desired, it can be installed separately.

Getting Started

Here you find a series of notebooks that give you an overview of the core features of Deeplay and how to use them:

Advanced Topics

Developer Tutorials

Here you find a series of notebooks tailored for Deeplay's developers:

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distribution

deeplay-0.1.0-py3-none-any.whl (173.1 kB view details)

Uploaded Python 3

File details

Details for the file deeplay-0.1.0-py3-none-any.whl.

File metadata

  • Download URL: deeplay-0.1.0-py3-none-any.whl
  • Upload date:
  • Size: 173.1 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.10.10

File hashes

Hashes for deeplay-0.1.0-py3-none-any.whl
Algorithm Hash digest
SHA256 016587aab659ddb26e2cc5c2717bfc0244a760fa849b641b17bfba2ef94149ee
MD5 de2c3fd6a4f4ebaf3cd2ca0c4e73224b
BLAKE2b-256 e314806ac9a0f2e731cfdf94f7dbe924e12099adaab256adc67bbe6a411e6b15

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page