Skip to main content

wrap lenstronomy for efficient simulation generation

Project description

DeepLenstronomy

Welcome to DeepLenstronomy, a wrapper that enables pipelining of the lenstronomy package for efficient and fast simulations of strong gravitational lensing systems.

Table of Contents


Installation

  • you can use pip to install the code
  • you will need to install lenstronomy, which has requirements: link to requirments

Requirement

  1. python 3.x
  2. lenstronomy 1.3.0 (https://github.com/sibirrer/lenstronomy)

Features

Pipeline Structure

The structure of the pipeline is as follows:

  1. Inputs
    1. YAML file
  2. Generate objects
    1. with some population samplnig
    2. with some instrument/experiment characteristics
    3. of a given type or species
  3. Run Diagnostics over sets of objects
    1. Display distributions of object parameters
    2. Show examples of objects

The primary elements of the simulated objects are

  1. Survey Model (noise and data fidelity): seeing (dist, per band), sky-brightness (dist; corr with seeing; per band?), zero-point (const; per band?), exp time (per band), num exposures, pixel scale (const), read noise, filter set
  2. Expected population distribution
  3. Injection simulations into real data for the given survey or model
  4. Sky noise: poisson (from lens, source, uniform sky bkg)
  5. A wide selection of strong lens species including gal-gal, gal-qso, gal-sn, multi-plane, cluster

Contributing

To get started install the code!

Options for contributions

We now have a good structure to the code, and all the pieces are pulled together, so the next stages of the development will be more clearly planned out.

We see the set of tasks below as the next things we need to do

  • bayeseisan hierachical models for efficient sampling
  • distribution sampling
  • use tensor 2 tensor or gal 2 gal for data structures and as a way to track data sets
  • unit tests
  • documentation
  • conda install

If you'd like to sign up to work on one of these elements, please contact Morgan or Nord.

Aside from those, the most important thing you can do is try to break the alpha version!


Team

  • Simon Birrer
  • Joshua Yao-Yu Lin
  • Rob Morgan
  • Brian Nord
  • Jason Poh

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distribution

deeplenstronomy-0.0.0.11-py2.py3-none-any.whl (44.7 kB view details)

Uploaded Python 2 Python 3

File details

Details for the file deeplenstronomy-0.0.0.11-py2.py3-none-any.whl.

File metadata

  • Download URL: deeplenstronomy-0.0.0.11-py2.py3-none-any.whl
  • Upload date:
  • Size: 44.7 kB
  • Tags: Python 2, Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/2.0.0 pkginfo/1.4.2 requests/2.22.0 setuptools/40.2.0 requests-toolbelt/0.9.1 tqdm/4.26.0 CPython/3.7.1

File hashes

Hashes for deeplenstronomy-0.0.0.11-py2.py3-none-any.whl
Algorithm Hash digest
SHA256 b7e6937316a610f7f1ef7fa5bc5ebb380a609ee4ce61269b83f4d4a70dc39b00
MD5 0a4ebf17af4cfac1a86530166c8b7cf7
BLAKE2b-256 db176b5c1911e7fe30b7789745126964aa6d9d72d9dccf3fdf6aa1cddd1180aa

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page