Skip to main content

A deep learning package for many-body potential energy representation and molecular dynamics

Project description

DeePMD-kit Manual

GitHub release Documentation Status

Table of contents

About DeePMD-kit

DeePMD-kit is a package written in Python/C++, designed to minimize the effort required to build deep learning based model of interatomic potential energy and force field and to perform molecular dynamics (MD). This brings new hopes to addressing the accuracy-versus-efficiency dilemma in molecular simulations. Applications of DeePMD-kit span from finite molecules to extended systems and from metallic systems to chemically bonded systems.

For more information, check the documentation.

Highlighted features

  • interfaced with TensorFlow, one of the most popular deep learning frameworks, making the training process highly automatic and efficient, in addition Tensorboard can be used to visualize training procedure.
  • interfaced with high-performance classical MD and quantum (path-integral) MD packages, i.e., LAMMPS and i-PI, respectively.
  • implements the Deep Potential series models, which have been successfully applied to finite and extended systems including organic molecules, metals, semiconductors, and insulators, etc.
  • implements MPI and GPU supports, makes it highly efficient for high performance parallel and distributed computing.
  • highly modularized, easy to adapt to different descriptors for deep learning based potential energy models.

Code structure

The code is organized as follows:

  • data/raw: tools manipulating the raw data files.

  • examples: example json parameter files.

  • source/3rdparty: third-party packages used by DeePMD-kit.

  • source/cmake: cmake scripts for building.

  • source/ipi: source code of i-PI client.

  • source/lib: source code of DeePMD-kit library.

  • source/lmp: source code of Lammps module.

  • source/op: tensorflow op implementation. working with library.

  • source/train: Python modules and scripts for training and testing.

License and credits

The project DeePMD-kit is licensed under GNU LGPLv3.0. If you use this code in any future publications, please cite this using Han Wang, Linfeng Zhang, Jiequn Han, and Weinan E. "DeePMD-kit: A deep learning package for many-body potential energy representation and molecular dynamics." Computer Physics Communications 228 (2018): 178-184.

Deep Potential in a nutshell

The goal of Deep Potential is to employ deep learning techniques and realize an inter-atomic potential energy model that is general, accurate, computationally efficient and scalable. The key component is to respect the extensive and symmetry-invariant properties of a potential energy model by assigning a local reference frame and a local environment to each atom. Each environment contains a finite number of atoms, whose local coordinates are arranged in a symmetry preserving way. These local coordinates are then transformed, through a sub-network, to a so-called atomic energy. Summing up all the atomic energies gives the potential energy of the system.

The initial proof of concept is in the Deep Potential paper, which employed an approach that was devised to train the neural network model with the potential energy only. With typical ab initio molecular dynamics (AIMD) datasets this is insufficient to reproduce the trajectories. The Deep Potential Molecular Dynamics (DeePMD) model overcomes this limitation. In addition, the learning process in DeePMD improves significantly over the Deep Potential method thanks to the introduction of a flexible family of loss functions. The NN potential constructed in this way reproduces accurately the AIMD trajectories, both classical and quantum (path integral), in extended and finite systems, at a cost that scales linearly with system size and is always several orders of magnitude lower than that of equivalent AIMD simulations.

Although being highly efficient, the original Deep Potential model satisfies the extensive and symmetry-invariant properties of a potential energy model at the price of introducing discontinuities in the model. This has negligible influence on a trajectory from canonical sampling but might not be sufficient for calculations of dynamical and mechanical properties. These points motivated us to develop the Deep Potential-Smooth Edition (DeepPot-SE) model, which replaces the non-smooth local frame with a smooth and adaptive embedding network. DeepPot-SE shows great ability in modeling many kinds of systems that are of interests in the fields of physics, chemistry, biology, and materials science.

In addition to building up potential energy models, DeePMD-kit can also be used to build up coarse-grained models. In these models, the quantity that we want to parameterize is the free energy, or the coarse-grained potential, of the coarse-grained particles. See the DeePCG paper for more details.

Download and install

Please follow our github webpage to download the latest released version and development version.

DeePMD-kit offers multiple installation methods. It is recommend using easily methods like offline packages, conda and docker.

One may manually install DeePMD-kit by following the instuctions on installing the python interface and installing the C++ interface. The C++ interface is necessary when using DeePMD-kit with LAMMPS and i-PI.

Use DeePMD-kit

The typical procedure of using DeePMD-kit includes 5 steps

  1. Prepare data
  2. Train a model
  3. Analyze training with Tensorboard
  4. Freeze the model
  5. Test the model
  6. Compress the model
  7. Inference the model in python or using the model in other molecular simulation packages like LAMMPS, i-PI or ASE.

A quick-start on using DeePMD-kit can be found here.

A full document on options in the training input script is available.

Troubleshooting

In consequence of various differences of computers or systems, problems may occur. Some common circumstances are listed as follows. If other unexpected problems occur, you're welcome to contact us for help.

Model compatability

When the version of DeePMD-kit used to training model is different from the that of DeePMD-kit running MDs, one has the problem of model compatability.

DeePMD-kit guarantees that the codes with the same major and minor revisions are compatible. That is to say v0.12.5 is compatible to v0.12.0, but is not compatible to v0.11.0 nor v1.0.0.

Installation: inadequate versions of gcc/g++

Sometimes you may use a gcc/g++ of version <4.9. If you have a gcc/g++ of version > 4.9, say, 7.2.0, you may choose to use it by doing

export CC=/path/to/gcc-7.2.0/bin/gcc
export CXX=/path/to/gcc-7.2.0/bin/g++

If, for any reason, for example, you only have a gcc/g++ of version 4.8.5, you can still compile all the parts of TensorFlow and most of the parts of DeePMD-kit. i-Pi will be disabled automatically.

Installation: build files left in DeePMD-kit

When you try to build a second time when installing DeePMD-kit, files produced before may contribute to failure. Thus, you may clear them by

cd build
rm -r *

and redo the cmake process.

MD: cannot run LAMMPS after installing a new version of DeePMD-kit

This typically happens when you install a new version of DeePMD-kit and copy directly the generated USER-DEEPMD to a LAMMPS source code folder and re-install LAMMPS.

To solve this problem, it suffices to first remove USER-DEEPMD from LAMMPS source code by

make no-user-deepmd

and then install the new USER-DEEPMD.

If this does not solve your problem, try to decompress the LAMMPS source tarball and install LAMMPS from scratch again, which typically should be very fast.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

deepmd-kit-2.0.0a0.tar.gz (5.3 MB view details)

Uploaded Source

Built Distributions

deepmd_kit-2.0.0a0-cp38-cp38-manylinux2010_x86_64.whl (650.7 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ x86-64

deepmd_kit-2.0.0a0-cp37-cp37m-manylinux2010_x86_64.whl (650.7 kB view details)

Uploaded CPython 3.7m manylinux: glibc 2.12+ x86-64

deepmd_kit-2.0.0a0-cp36-cp36m-manylinux2010_x86_64.whl (650.7 kB view details)

Uploaded CPython 3.6m manylinux: glibc 2.12+ x86-64

File details

Details for the file deepmd-kit-2.0.0a0.tar.gz.

File metadata

  • Download URL: deepmd-kit-2.0.0a0.tar.gz
  • Upload date:
  • Size: 5.3 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.9.4

File hashes

Hashes for deepmd-kit-2.0.0a0.tar.gz
Algorithm Hash digest
SHA256 1af68a00a6a267bd700cda6b49d90f84988aa7019a021ea98f9e6efecded8949
MD5 081569a8dd04e1ab316b28277ec6f1ac
BLAKE2b-256 b556ede787e36a294bd07b041642d62029036ef77dcddf0d949ef07b00496347

See more details on using hashes here.

File details

Details for the file deepmd_kit-2.0.0a0-cp38-cp38-manylinux2010_x86_64.whl.

File metadata

  • Download URL: deepmd_kit-2.0.0a0-cp38-cp38-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 650.7 kB
  • Tags: CPython 3.8, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.9.4

File hashes

Hashes for deepmd_kit-2.0.0a0-cp38-cp38-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 bd66604bf470a8d8dbca6f90b615885eaa8a9b070fec08db0d3217231cae9c6c
MD5 d40a134c77d736dabec770326ab36cc7
BLAKE2b-256 a262d48aa8b1283ff8e0ea57999f755cc1264bb53ad5b08c147df05905a038d0

See more details on using hashes here.

File details

Details for the file deepmd_kit-2.0.0a0-cp37-cp37m-manylinux2010_x86_64.whl.

File metadata

  • Download URL: deepmd_kit-2.0.0a0-cp37-cp37m-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 650.7 kB
  • Tags: CPython 3.7m, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.9.4

File hashes

Hashes for deepmd_kit-2.0.0a0-cp37-cp37m-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 55f7660c08f73bf4f17130931f72c655a807a748fa8f1b1d3b6e2ffd138c2142
MD5 32889b5f3d665efabd343a1827c5a5f4
BLAKE2b-256 f9bb039424a71b2c5ab0aae7bacedd70fe114f070de448bb7c3550de0f189195

See more details on using hashes here.

File details

Details for the file deepmd_kit-2.0.0a0-cp36-cp36m-manylinux2010_x86_64.whl.

File metadata

  • Download URL: deepmd_kit-2.0.0a0-cp36-cp36m-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 650.7 kB
  • Tags: CPython 3.6m, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.9.4

File hashes

Hashes for deepmd_kit-2.0.0a0-cp36-cp36m-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 25dc7a69b08fdcba1cd0bceaedab44de6dea9e6877efe1763ab378b5b8d3a19f
MD5 69266ecbc1e3fc7c64663f114d21afa7
BLAKE2b-256 0e0676c8e664a3bce298872a4d84116b973dbabd35b9199f97b3013e0478f4e8

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page