Skip to main content

deepmeta

Project description

deepmeta: Deep Meta Learning

This package implements deep meta learning algorithms.

Usage Example

import numpy as np
from tensorflow.keras import layers, models
from deepmeta import MAML

# Define a deep-network model
input_shape = (28, 28, 1)
category_count = 10
model = models.Sequential([
    layers.Conv2D(32, kernel_size=(3, 3), activation='relu', input_shape=input_shape),
    layers.MaxPooling2D(pool_size=(2, 2)),
    layers.Flatten(),
    layers.Dense(128, activation='relu'),
    layers.Dense(category_count, activation='softmax')
])

# Initialize MAML
maml = MAML(model, meta_lr=0.001, task_lr=0.01, inner_steps=5)

# Generate dummy data
train_sample_count = 100
test_sample_count = 50
train_features = np.random.rand(*([train_sample_count] + list(input_shape)))
train_targets = np.random.randint(0, category_count, size=(train_sample_count,))
test_features = np.random.rand(*([test_sample_count] + list(input_shape)))
test_targets = np.random.randint(0, category_count, size=(test_sample_count,))

# Split data into tasks
support_set = [(train_features[i:i+5], train_targets[i:i+5]) for i in range(0, 100, 5)]
query_set = [(test_features[i:i+5], test_targets[i:i+5]) for i in range(0, 50, 5)]

# Train MAML
for epoch in range(10):
    meta_loss = maml.train_step(support_set, query_set)
    print(f"epoch: {epoch}, meta loss: {meta_loss.numpy()}")

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

deepmeta-0.0.1.tar.gz (2.8 kB view details)

Uploaded Source

Built Distribution

deepmeta-0.0.1-py3-none-any.whl (3.0 kB view details)

Uploaded Python 3

File details

Details for the file deepmeta-0.0.1.tar.gz.

File metadata

  • Download URL: deepmeta-0.0.1.tar.gz
  • Upload date:
  • Size: 2.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for deepmeta-0.0.1.tar.gz
Algorithm Hash digest
SHA256 d1261fd0dfe47fed6e0e6c71abf284e05af0c597f224eb4493bbcbc39c793a3b
MD5 2ccd301dd1f8e81e456177047f2583f1
BLAKE2b-256 59dd6ae1383ebe34fbde12e38e1980b910ad2232407d2c6cc503fad5ec256654

See more details on using hashes here.

File details

Details for the file deepmeta-0.0.1-py3-none-any.whl.

File metadata

  • Download URL: deepmeta-0.0.1-py3-none-any.whl
  • Upload date:
  • Size: 3.0 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for deepmeta-0.0.1-py3-none-any.whl
Algorithm Hash digest
SHA256 62a6898b6acf96327507b64534ee20255356b9d05ff14842f6cf7231ed4263de
MD5 8bf00e8ac7d8e6e07632e9329fdd3acf
BLAKE2b-256 446dea3054e14a85545353e441168c58e1ff0148d1c55ff6baeba930210ff8bb

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page