Skip to main content

"Hyper-parameters in Action!" visualizing tool for Keras models.

Project description

# Deep Replay

## Generate visualizations as in my "Hyper-parameters in Action!" series of posts!

***Deep Replay*** is a package designed to allow you to ***replay*** in a visual fashion the training process of a Deep Learning model in Keras, as I have done in my [Hyper-parameter in Action!](https://towardsdatascience.com/hyper-parameters-in-action-a524bf5bf1c) post on [Towards Data Science](http://towardsdatascience.com).

This is an example of what you can do using ***Deep Replay***:

![Part 1 Animation](/images/part1.gif)

It contains:
- a Keras' callback - ***ReplayData*** - which collects then necessary information, mostly the weights, during the training epochs;
- a class ***Replay***, which leverages the collected data to build several kinds of visualizations.

The available visualizations are:
- ***Feature Space***: plot of a 2-D grid representing the twisted and turned feature space, corresponding to the output of a hidden layer (only 2-unit hidden layers supported for now);
- ***Probabilities***: histograms of the resulting class probabilities for the inputs, corresponding to the output of the final layer (only binary classification supported for now);
- ***Loss and Metric***: line plot for the loss and a chosen metric, computed over all the inputs;
- ***Losses***: histogram of the losses computed over all the inputs (only binary cross-entropy loss suported for now).

Feature Space | Class Probability | Loss/Metric | Losses
:-:|:-:|:-:|:-:
![Feature Space](/images/feature_space.png) | ![Probability Histogram](/images/prob_histogram.png) | ![Loss and Metric](/images/loss_and_metric.png) | ![Loss Histogram](/images/loss_histogram.png)

### Installation

To install ***Deep Replay*** from [PyPI](https://pypi.org/project/deepreplay/), just type:
```python
pip install deepreplay
```

### Quick Start

To use ***Deep Replay***, you must first create an instance of the Keras' callback, ***ReplayData***, passing as arguments the inputs (X) and outputs (y) you're using to train the model, as well as the filename and group (for more details, see h5py) where you want the collected data to be saved:
```python
from deepreplay.callbacks import ReplayData
from deepreplay.datasets.parabola import load_data

X, y = load_data()

replaydata = ReplayData(X, y, filename='hyperparms_in_action.h5', group_name='part1')
```

Then, create a Keras model of your choice, compile it and fit it, adding the instance of the callback object you just created:
```python
from keras.models import Sequential
from keras.layers import Dense
from keras.optimizers import SGD
from keras.initializers import glorot_normal, normal

model = Sequential()
model.add(Dense(input_dim=2,
units=2,
activation='sigmoid',
kernel_initializer=glorot_normal(seed=42),
name='hidden'))
model.add(Dense(units=1,
activation='sigmoid',
kernel_initializer=normal(seed=42),
name='output'))

model.compile(loss='binary_crossentropy', optimizer=SGD(lr=0.05), metrics=['acc'])

model.fit(X, y, epochs=150, batch_size=16, callbacks=[replaydata])
```

After your model finishes training, you'll end up with a HDF5 file (***hyperparms_in_action.h5***, in the example), containing a new group (***part1***, in the example) that holds all the necessary information. The Keras model itself is also automatically saved as ***<group_name>_model.h5***, that is, ***part1_model.h5*** in the example.

Next, it is time to feed the information to a ***Replay*** instance:
```python
from deepreplay.replay import Replay

replay = Replay(replay_filename='hyperparms_in_action.h5', group_name='part1')
```

Then, you can create a regular Matplotlib figure, like:
```python
import matplotlib.pyplot as plt

fig, ax = plt.subplots(1, 1, figsize=(5, 5))
```

And use your ***Replay*** instance to build the visualization of your choice, say, ***Feature Space*** based on the output of the layer named ***hidden***:
```python
fs = replay.build_feature_space(ax, layer_name='hidden')
```

Now, you're ready to make a ***plot*** of your ***Feature Space*** in any given ***epoch***, or to ***animate*** its evolution during the whole training:
```python
fs.plot(epoch=60).savefig('feature_space_epoch60.png', dpi=120)
fs.animate().save('feature_space_animation.mp4', dpi=120, fps=5)
```

The results should look like this:

![Feature Space Epoch 60](/images/feature_space_epoch60.png) ![Feature Space Animation](/images/feature_space_animation.gif)

### Comments, questions, suggestions, bugs

***DISCLAIMER***: this is a project ***under development***, so it is likely you'll run into bugs/problems.

So, if you find any bugs/problems, please open an [issue](https://github.com/dvgodoy/deepreplay/issues) or submit a [pull request](https://github.com/dvgodoy/deepreplay/pulls).


Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

deepreplay-0.1.0.dev3.tar.gz (9.8 kB view details)

Uploaded Source

Built Distribution

deepreplay-0.1.0.dev3-py2.py3-none-any.whl (15.1 kB view details)

Uploaded Python 2Python 3

File details

Details for the file deepreplay-0.1.0.dev3.tar.gz.

File metadata

File hashes

Hashes for deepreplay-0.1.0.dev3.tar.gz
Algorithm Hash digest
SHA256 51502ff1a7f5aa4d14d59d5743050912083864f2db7221fc43bb2ceb8e1039c8
MD5 ea163bd32117889ab2f7a8e5cd2ee877
BLAKE2b-256 2eb8a2ac836cd6d630b9311b57faa53491bb8b0a4d9fe93a781286d49e60bb87

See more details on using hashes here.

File details

Details for the file deepreplay-0.1.0.dev3-py2.py3-none-any.whl.

File metadata

File hashes

Hashes for deepreplay-0.1.0.dev3-py2.py3-none-any.whl
Algorithm Hash digest
SHA256 5d0c4421e1c4d6536b86c5b68d04cc20f8d6ae44be59f7fb17649f434c01ebd3
MD5 ec35e3839ba364ea6f8f1c497eff28b1
BLAKE2b-256 b6bf6670cabd89db2fa9fea95b84fcc0780d148176562f6850d2708c1a01ea79

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page