Skip to main content

deep_semantic_histology: Deep Semantic Representations for Cancer Histology Images

Project description

https://github.com/dakomura/deep_semantic_histology/blob/main/docs/_static/logo/dsr_logo.jpg

Overview

deep_semantic_representation is a python library to apply tissue/cell segmentation models for histology images (bioRxiv, 2022). Fucntions for plotting the distribution are also implemented.

Installation

The package can be installed with pip:

$ pip install deepsemantic

Prerequisites

Python version 3.6 or newer.

  • numpy >=1.20.3

  • joblib >=0.13.2

  • Pillow >=8.0.1

  • nmslib >=2.0.6

  • matplotlib >= 3.5.0

  • scikit-learn >=1.1.0

  • seaborn >=0.10.1

  • pandas >=1.1.0

  • cv2

License

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC-BY-NC-SA 4.0)

For non-commercial use, please use the code under CC-BY-NC-SA.

If you would like to use the code for commercial purposes, please contact us <ishum-prm@m.u-tokyo.ac.jp>.

Citation

If you use this library for your research, please cite:

Komura, D., Kawabe, A., Fukuta, K., Sano, K., Umezaki, T., Koda, H., Suzuki, R., Tominaga, K., Ochi, M., Konishi, H., Masakado, F., Saito, N., Sato, Y., Onoyama, T., Nishida, S., Furuya, G., Katoh, H., Yamashita, H., Kakimi, K., Seto, Y., Ushiku, T., Fukayama, M., Ishikawa, S.,

Universal encoding of pan-cancer histology by deep texture representations.

Cell Reports 38, 110424,2022. https://doi.org/10.1016/j.celrep.2022.110424

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

deepsemhist-0.0.3.tar.gz (12.5 kB view details)

Uploaded Source

Built Distribution

deepsemhist-0.0.3-py3-none-any.whl (14.2 kB view details)

Uploaded Python 3

File details

Details for the file deepsemhist-0.0.3.tar.gz.

File metadata

  • Download URL: deepsemhist-0.0.3.tar.gz
  • Upload date:
  • Size: 12.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.2

File hashes

Hashes for deepsemhist-0.0.3.tar.gz
Algorithm Hash digest
SHA256 dd5020783c2d85af6950c537da0de277c5fe6cc55cf2d00c7851072c90ade981
MD5 b5e186f3ff874b71ceb33bde3dab0dce
BLAKE2b-256 b8be00ca92b978bf1da11005b946dd1931da25a685322be81aa99d63386af3fa

See more details on using hashes here.

File details

Details for the file deepsemhist-0.0.3-py3-none-any.whl.

File metadata

  • Download URL: deepsemhist-0.0.3-py3-none-any.whl
  • Upload date:
  • Size: 14.2 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.2

File hashes

Hashes for deepsemhist-0.0.3-py3-none-any.whl
Algorithm Hash digest
SHA256 fac278abe93650beaf0f58880c8865a92e0a005470f067f4cb7bc150dbfc9ea9
MD5 c6b45e29117231d42831ae4f583fb298
BLAKE2b-256 64f45e04d87aea8733810338476c155c4c954d1053d770a9b3f5fe013265ac89

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page