Skip to main content

A deep learning oriented microscopy image simulation package

Project description

DeepTrack is a comprehensive deep learning framework for digital microscopy. We provide tools to create physical simulations of customizable optical systems, to generate and train neural network models, and to analyze experimental data.

Getting started

Installation

DeepTrack 2.0 requires at least python 3.6

To install DeepTrack 2.0, open a terminal or command prompt and run

pip install deeptrack

Learning DeepTrack 2.0

Everybody learns in different ways! Depending on your preferences, and what you want to do with DeepTrack, you may want to check out one or more of these resources.

Fundamentals

First, we have a very general walkthrough of basic and advanced topics. This is a 5-10 minute read, that well get you well on your way to understand the unique interactions available in DeepTrack.

DeepTrack 2.0 in action

To see DeepTrack in action, we provide six well documented tutorial notebooks that create simulation pipelines and train models:

  1. deeptrack_introduction_tutorial gives an overview of how to use DeepTrack 2.0.
  2. tracking_particle_cnn_tutorial demonstrates how to track a point particle with a convolutional neural network (CNN).
  3. tracking_multiple_particles_unet_tutorial demonstrates how to track multiple particles using a U-net.
  4. characterizing_aberrations_tutorial demonstrates how to add and characterize aberrations of an optical device.
  5. distinguishing_particles_in_brightfield_tutorial demonstrates how to use a U-net to track and distinguish particles of different sizes in brightfield microscopy.
  6. analyzing_video_tutorial demonstrates how to create videos and how to train a neural network to analyze them.

Additionally, we have seven more case studies which are less documented, but gives additional insight in how to use DeepTrack with real datasets

  1. MNIST classifies handwritted digits.
  2. single particle tracking tracks experimentally captured videos of a single particle. (Requires opencv-python compiled with ffmpeg to open and read a video.)
  3. single particle sizing extracts the radius and refractive index of particles.
  4. multi-particle tracking detects quantum dots in a low SNR image.
  5. 3-dimensional tracking tracks particles in three dimensions.
  6. cell counting counts the number of cells in fluorescence images.
  7. GAN image generation uses a GAN to create cell image from masks.

Video Tutorials

DeepTrack 2.0 introduction tutorial video: https://youtu.be/hyfaxF8q6VE
Tutorial

DeepTrack 2.0 recognizing handwritten digits tutorial video: https://youtu.be/QD9JUXyLJpc
Tutorial

DeepTrack 2.0 single particle tracking tutorial video: https://youtu.be/6Cntik6AfBI
Tutorial

DeepTrack 2.0 single-particle characterization tutorial video: https://youtu.be/ia2H1QO1cHg
Tutorial

DeepTrack 2.0 multiple particle tracking tutorial video: https://youtu.be/wFV2VqzpeZs
Tutorial

DeepTrack 2.0 multiple particle tracking in 3D tutorial video: https://youtu.be/fzD1QIEIJ04
Tutorial

DeepTrack 2.0 cell counting tutorial video: https://youtu.be/C6hu_IYoWtI
Tutorial

DeepTrack 2.0 GAN image generation tutorial video: https://youtu.be/8g44Yks7cis
Tutorial

In-depth dives

The examples folder contains notebooks which explains the different modules in more detail. These can be read in any order, but we provide a recommended order where more fundamental topics are introduced early. This order is as follows:

  1. features_example
  2. properties_example
  3. scatterers_example
  4. optics_example
  5. aberrations_example
  6. noises_example
  7. augmentations_example
  8. image_example
  9. generators_example
  10. models_example
  11. losses_example
  12. utils_example
  13. sequences_example
  14. math_example

Graphical user interface

DeepTrack 2.0 provides a completely stand-alone graphical user interface, which delivers all the power of DeepTrack without requiring programming knowledge.

InterfaceDemo

Documentation

The detailed documentation of DeepTrack 2.0 is available at the following link: https://softmatterlab.github.io/DeepTrack-2.0/deeptrack.html

Cite us!

If you use DeepTrack 2.0 in your project, please cite us here:

Benjamin Midtvedt, Saga Helgadottir, Aykut Argun, Jesús Pineda, Daniel Midtvedt, Giovanni Volpe. "Quantitative Digital Microscopy with Deep Learning." [arXiv:2010.08260](https://arxiv.org/abs/2010.08260)

See also:

Saga Helgadottir, Aykut Argun, and Giovanni Volpe. "Digital video microscopy enhanced by deep learning." Optica 6.4 (2019): 506-513. [10.1364/OPTICA.6.000506](https://doi.org/10.1364/OPTICA.6.000506)

Saga Helgadottir, Aykut Argun, and Giovanni Volpe. "DeepTrack." https://github.com/softmatterlab/DeepTrack.git (2019).

Funding

This work was supported by the ERC Starting Grant ComplexSwimmers (Grant No. 677511).

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

deeptrack-0.10.0.tar.gz (70.0 kB view details)

Uploaded Source

Built Distribution

deeptrack-0.10.0-py3-none-any.whl (80.2 kB view details)

Uploaded Python 3

File details

Details for the file deeptrack-0.10.0.tar.gz.

File metadata

  • Download URL: deeptrack-0.10.0.tar.gz
  • Upload date:
  • Size: 70.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/49.2.1 requests-toolbelt/0.9.1 tqdm/4.56.1 CPython/3.8.6

File hashes

Hashes for deeptrack-0.10.0.tar.gz
Algorithm Hash digest
SHA256 7af10d4d91c8c6e4552cbe1fbb65de8d464d547dee26d91ecdeffbbc39c97a73
MD5 aacacb0408ea694e0e18a84f856b7131
BLAKE2b-256 3709c7beb4d9e1e18eebcfe33aa44ce9c7c00579b8a0399f10305fcdc36b6a54

See more details on using hashes here.

File details

Details for the file deeptrack-0.10.0-py3-none-any.whl.

File metadata

  • Download URL: deeptrack-0.10.0-py3-none-any.whl
  • Upload date:
  • Size: 80.2 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/49.2.1 requests-toolbelt/0.9.1 tqdm/4.56.1 CPython/3.8.6

File hashes

Hashes for deeptrack-0.10.0-py3-none-any.whl
Algorithm Hash digest
SHA256 6d49998414387c1a6a817cf9464b45f27e2c6b7e03dce96785720e5278d96d3e
MD5 eac9ea659376e661e1607f166dd450ba
BLAKE2b-256 442967f7115dd17eb0d7606d32960b398fba2d204057f322e7651218fe1ad855

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page