Skip to main content

A deep learning oriented microscopy image simulation package

Project description

DeepTrack is a comprehensive deep learning framework for digital microscopy. We provide tools to create physical simulations of customizable optical systems, to generate and train neural network models, and to analyze experimental data.

If you use DeepTrack 2.0 in your project, please cite our DeepTrack 2.0 article:

Benjamin Midtvedt, Saga Helgadottir, Aykut Argun, Jesús Pineda, Daniel Midtvedt, Giovanni Volpe. 
"Quantitative Digital Microscopy with Deep Learning."
Applied Physics Reviews 8 (2021), 011310.
https://doi.org/10.1063/5.0034891

Getting started

Installation

DeepTrack 2.0 requires at least python 3.6

To install DeepTrack 2.0, open a terminal or command prompt and run

pip install deeptrack

Learning DeepTrack 2.0

Everybody learns in different ways! Depending on your preferences, and what you want to do with DeepTrack, you may want to check out one or more of these resources.

Fundamentals

First, we have a very general walkthrough of basic and advanced topics. This is a 5-10 minute read, that will get you well on your way to understand the unique interactions available in DeepTrack.

DeepTrack 2.0 in action

To see DeepTrack in action, we provide six well documented tutorial notebooks that create simulation pipelines and train models:

  1. deeptrack_introduction_tutorial gives an overview of how to use DeepTrack 2.0.
  2. tracking_particle_cnn_tutorial demonstrates how to track a point particle with a convolutional neural network (CNN).
  3. tracking_multiple_particles_unet_tutorial demonstrates how to track multiple particles using a U-net.
  4. characterizing_aberrations_tutorial demonstrates how to add and characterize aberrations of an optical device.
  5. distinguishing_particles_in_brightfield_tutorial demonstrates how to use a U-net to track and distinguish particles of different sizes in brightfield microscopy.
  6. analyzing_video_tutorial demonstrates how to create videos and how to train a neural network to analyze them.

Additionally, we have seven more case studies which are less documented, but gives additional insight in how to use DeepTrack with real datasets

  1. MNIST classifies handwritted digits.
  2. single particle tracking tracks experimentally captured videos of a single particle. (Requires opencv-python compiled with ffmpeg to open and read a video.)
  3. single particle sizing extracts the radius and refractive index of particles.
  4. multi-particle tracking detects quantum dots in a low SNR image.
  5. 3-dimensional tracking tracks particles in three dimensions.
  6. cell counting counts the number of cells in fluorescence images.
  7. GAN image generation uses a GAN to create cell image from masks.

Video Tutorials

DeepTrack 2.0 introduction tutorial video: https://youtu.be/hyfaxF8q6VE
Tutorial

DeepTrack 2.0 recognizing handwritten digits tutorial video: https://youtu.be/QD9JUXyLJpc
Tutorial

DeepTrack 2.0 single particle tracking tutorial video: https://youtu.be/6Cntik6AfBI
Tutorial

DeepTrack 2.0 single-particle characterization tutorial video: https://youtu.be/ia2H1QO1cHg
Tutorial

DeepTrack 2.0 multiple particle tracking tutorial video: https://youtu.be/wFV2VqzpeZs
Tutorial

DeepTrack 2.0 multiple particle tracking in 3D tutorial video: https://youtu.be/fzD1QIEIJ04
Tutorial

DeepTrack 2.0 cell counting tutorial video: https://youtu.be/C6hu_IYoWtI
Tutorial

DeepTrack 2.0 GAN image generation tutorial video: https://youtu.be/8g44Yks7cis
Tutorial

In-depth dives

The examples folder contains notebooks which explains the different modules in more detail. These can be read in any order, but we provide a recommended order where more fundamental topics are introduced early. This order is as follows:

  1. features_example
  2. properties_example
  3. scatterers_example
  4. optics_example
  5. aberrations_example
  6. noises_example
  7. augmentations_example
  8. image_example
  9. generators_example
  10. models_example
  11. losses_example
  12. utils_example
  13. sequences_example
  14. math_example

Graphical user interface

DeepTrack 2.0 provides a completely stand-alone graphical user interface, which delivers all the power of DeepTrack without requiring programming knowledge.

InterfaceDemo

Documentation

The detailed documentation of DeepTrack 2.0 is available at the following link: https://softmatterlab.github.io/DeepTrack-2.0/deeptrack.html

Cite us!

If you use DeepTrack 2.0 in your project, please cite us here:

Benjamin Midtvedt, Saga Helgadottir, Aykut Argun, Jesús Pineda, Daniel Midtvedt, Giovanni Volpe. 
"Quantitative Digital Microscopy with Deep Learning."
Applied Physics Reviews 8 (2021), 011310.
https://doi.org/10.1063/5.0034891

See also:

Saga Helgadottir, Aykut Argun, and Giovanni Volpe. 
"Digital video microscopy enhanced by deep learning." 
Optica 6.4 (2019): 506-513. 
https://doi.org/10.1364/OPTICA.6.000506
Saga Helgadottir, Aykut Argun, and Giovanni Volpe. 
"DeepTrack." (2019)
https://github.com/softmatterlab/DeepTrack.git

Funding

This work was supported by the ERC Starting Grant ComplexSwimmers (Grant No. 677511).

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

deeptrack-0.11.4.tar.gz (70.2 kB view details)

Uploaded Source

Built Distribution

deeptrack-0.11.4-py3-none-any.whl (124.9 kB view details)

Uploaded Python 3

File details

Details for the file deeptrack-0.11.4.tar.gz.

File metadata

  • Download URL: deeptrack-0.11.4.tar.gz
  • Upload date:
  • Size: 70.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/49.2.1 requests-toolbelt/0.9.1 tqdm/4.56.1 CPython/3.8.6

File hashes

Hashes for deeptrack-0.11.4.tar.gz
Algorithm Hash digest
SHA256 76a0e68a793b2df629d16994e88b424de595c7ab1581cff98c42af00362b05fa
MD5 d9bdf06bfcfd409614cd92f9278c9f6f
BLAKE2b-256 fcb14f5cc43626927faad452589741741e0144abf73f192849f106196e142d84

See more details on using hashes here.

File details

Details for the file deeptrack-0.11.4-py3-none-any.whl.

File metadata

  • Download URL: deeptrack-0.11.4-py3-none-any.whl
  • Upload date:
  • Size: 124.9 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/49.2.1 requests-toolbelt/0.9.1 tqdm/4.56.1 CPython/3.8.6

File hashes

Hashes for deeptrack-0.11.4-py3-none-any.whl
Algorithm Hash digest
SHA256 fe9a099aead7a0da6f292852b761725845f84b15db3e89489c7107afee80c7fa
MD5 d7f59ef17b975aae41b733571add823e
BLAKE2b-256 73e67a51f3be1255b309c74f38116b0634910a9987142ea3db7aa3265f7f46da

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page