Skip to main content

A deep learning oriented microscopy image simulation package

Project description

DeepTrack is a comprehensive deep learning framework for digital microscopy. We provide tools to create physical simulations of customizable optical systems, to generate and train neural network models, and to analyze experimental data.

Getting started

Installation

DeepTrack 2.0 requires at least python 3.6

To install DeepTrack 2.0, open a terminal or command prompt and run

pip install deeptrack

Learning DeepTrack 2.0

Everybody learns in different ways! Depending on your preferences, and what you want to do with DeepTrack, you may want to check out one or more of these resources.

Fundamentals

First, we have a very general walkthrough of basic and advanced topics. This is a 5-10 minute read, that well get you well on your way to understand the unique interactions available in DeepTrack.

DeepTrack 2.0 in action

To see DeepTrack in action, we provide six well documented tutorial notebooks that create simulation pipelines and train models:

  1. deeptrack_introduction_tutorial gives an overview of how to use DeepTrack 2.0.
  2. tracking_particle_cnn_tutorial demonstrates how to track a point particle with a convolutional neural network (CNN).
  3. tracking_multiple_particles_unet_tutorial demonstrates how to track multiple particles using a U-net.
  4. characterizing_aberrations_tutorial demonstrates how to add and characterize aberrations of an optical device.
  5. distinguishing_particles_in_brightfield_tutorial demonstrates how to use a U-net to track and distinguish particles of different sizes in brightfield microscopy.
  6. analyzing_video_tutorial demonstrates how to create videos and how to train a neural network to analyze them.

Additionally, we have seven more case studies which are less documented, but gives additional insight in how to use DeepTrack with real datasets

  1. MNIST classifies handwritted digits.
  2. single particle tracking tracks experimentally captured videos of a single particle. (Requires opencv-python compiled with ffmpeg to open and read a video.)
  3. single particle sizing extracts the radius and refractive index of particles.
  4. multi-particle tracking detects quantum dots in a low SNR image.
  5. 3-dimensional tracking tracks particles in three dimensions.
  6. cell counting counts the number of cells in fluorescence images.
  7. GAN image generation uses a GAN to create cell image from masks.

Video Tutorials

[TBA]

In-depth dives

The examples folder contains notebooks which explains the different modules in more detail. These can be read in any order, but we provide a recommended order where more fundamental topics are introduced early. This order is as follows:

  1. features_example
  2. properties_example
  3. scatterers_example
  4. optics_example
  5. aberrations_example
  6. noises_example
  7. augmentations_example
  8. image_example
  9. generators_example
  10. models_example
  11. losses_example
  12. utils_example
  13. sequences_example
  14. math_example

Graphical user interface

DeepTrack 2.0 provides a completely stand-alone graphical user interface, which delivers all the power of DeepTrack without requiring programming knowledge.

InterfaceDemo

Documentation

The detailed documentation of DeepTrack 2.0 is available at the following link: https://softmatterlab.github.io/DeepTrack-2.0/deeptrack.html

Cite us!

If you use DeepTrack 2.0 in your project, please cite us here:

Benjamin Midtvedt, Saga Helgadottir, Aykut Argun, Jesús Pineda, Daniel Midtvedt, Giovanni Volpe. "Quantitative Digital Microscopy with Deep Learning." [arXiv:2010.08260](https://arxiv.org/abs/2010.08260)

See also:

Saga Helgadottir, Aykut Argun, and Giovanni Volpe. "Digital video microscopy enhanced by deep learning." Optica 6.4 (2019): 506-513. [10.1364/OPTICA.6.000506](https://doi.org/10.1364/OPTICA.6.000506)

Saga Helgadottir, Aykut Argun, and Giovanni Volpe. "DeepTrack." https://github.com/softmatterlab/DeepTrack.git (2019).

Funding

This work was supported by the ERC Starting Grant ComplexSwimmers (Grant No. 677511).

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

deeptrack-0.7.4.tar.gz (65.3 kB view details)

Uploaded Source

Built Distribution

deeptrack-0.7.4-py3-none-any.whl (61.5 kB view details)

Uploaded Python 3

File details

Details for the file deeptrack-0.7.4.tar.gz.

File metadata

  • Download URL: deeptrack-0.7.4.tar.gz
  • Upload date:
  • Size: 65.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.0 requests/2.22.0 setuptools/45.2.0 requests-toolbelt/0.9.1 tqdm/4.51.0 CPython/3.8.5

File hashes

Hashes for deeptrack-0.7.4.tar.gz
Algorithm Hash digest
SHA256 d96beec2919055770a0dd16af857ce1a86f9adfacd27ac530e5baf330d18d9d7
MD5 6adf650d9e5dc577a7119a499bd8401c
BLAKE2b-256 ebedd9550c2b583e4a070d0acf474f138ee352bf57b402b3172e855c2d4faee5

See more details on using hashes here.

File details

Details for the file deeptrack-0.7.4-py3-none-any.whl.

File metadata

  • Download URL: deeptrack-0.7.4-py3-none-any.whl
  • Upload date:
  • Size: 61.5 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.0 requests/2.22.0 setuptools/45.2.0 requests-toolbelt/0.9.1 tqdm/4.51.0 CPython/3.8.5

File hashes

Hashes for deeptrack-0.7.4-py3-none-any.whl
Algorithm Hash digest
SHA256 0fc038d027b19563e2de5761a10e476df5df92a1ad2f5023c1cb342588cf1b6d
MD5 8a9f88e2b2b7d3e4b3fe8d29c192e677
BLAKE2b-256 6cd955cb1fbeaf2f56ba800e572b982557e516bb604ff678fd3e30746ae89d84

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page