Skip to main content

Wave propagation modules for PyTorch

Project description

Deepwave

DOI

Deepwave provides wave propagation modules for PyTorch, for applications such as seismic imaging/inversion. You can use it to perform forward modelling and backpropagation, so it can simulate wave propagation to generate synthetic data, invert for the scattering potential (RTM/LSRTM), other model parameters (FWI), initial wavefields, or source wavelets. You can use it to integrate wave propagation into a larger chain of operations with end-to-end forward and backpropagation. Deepwave enables you to easily experiment with your own objective functions or functions that generate the inputs to the propagator, letting PyTorch's automatic differentiation do the hard work of calculating how to backpropagate through them.

To install it, I recommend first installing PyTorch using the instructions on the PyTorch website. Deepwave can then be installed using

    pip install deepwave

The documentation contains examples and instructions on how to install and use Deepwave. You might also like to watch a video summary of Deepwave.

Features

  • Supports the 2D constant density acoustic / scalar wave equation (regular and Born modelling) and 2D elastic wave equation (P-SV)
  • Runs on CPUs and appropriate GPUs
  • The gradient of all outputs (final wavefields and receiver data) can be calculated with respect to the model parameters (wavespeed, scattering potential, etc.), initial wavefields, and source amplitudes
  • Uses the Pasalic and McGarry PML for accurate absorbing boundaries in the scalar wave propagator
  • Uses C-PML with the W-AFDA free-surface method for the elastic wave propagator
  • The PML width for each edge can be set independently, allowing a free surface (no PML) on any side
  • Finite difference accuracy can be set by the user
  • A region of the model around the sources and receivers currently being propagated can be automatically extracted to avoid the unnecessary computation of propagation in distant parts of the model
  • Double backpropagation through the regular scalar propagator, including calculating the Hessian

Quick Example

In a few lines you can make a velocity model, propagate a wave from a source in the top left corner to a receiver in the top right, calculate an objective function, and backpropagate to obtain its gradient with respect to the velocity.

import torch
import deepwave
import matplotlib.pyplot as plt

v = 1500 * torch.ones(100, 100)
v[50:] = 2000
v.requires_grad_()

out = deepwave.scalar(
    v, grid_spacing=4, dt=0.004,
    source_amplitudes=deepwave.wavelets.ricker(25, 200, 0.004, 0.06).reshape(1, 1, -1),
    source_locations=torch.tensor([[[0, 0]]]),
    receiver_locations=torch.tensor([[[0, 99]]])
)

(out[-1]**2).sum().backward()

_, ax = plt.subplots(1, 3, figsize=(9, 3))
ax[0].imshow(v.detach())
ax[0].set_title("Velocity model")
ax[1].plot(out[-1].detach().flatten())
ax[1].set_title("Receiver data")
ax[2].imshow(v.grad.detach(), vmin=-1e-5, vmax=1e-5)
ax[2].set_title("Gradient")

Output from quick example

There are more examples in the documentation.

Citing

If you would like to cite Deepwave, I suggest:

@software{richardson_alan_2023,
  author       = {Richardson, Alan},
  title        = {Deepwave},
  month        = sep,
  year         = 2023,
  publisher    = {Zenodo},
  version      = {v0.0.20},
  doi          = {10.5281/zenodo.8189232},
  url          = {https://doi.org/10.5281/zenodo.8189232}
}

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

deepwave-0.0.20.tar.gz (16.4 MB view details)

Uploaded Source

File details

Details for the file deepwave-0.0.20.tar.gz.

File metadata

  • Download URL: deepwave-0.0.20.tar.gz
  • Upload date:
  • Size: 16.4 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.12

File hashes

Hashes for deepwave-0.0.20.tar.gz
Algorithm Hash digest
SHA256 ff7485e10d4d7a71841e98b8857df4676ad79a8b8a5c334e632065a4693f404a
MD5 6bcc71c027b7da8bbc13a8283325490b
BLAKE2b-256 3c112809ff1b9e06acb6b17ccdca8f03e07c3062de30495da13eb0af4499ef63

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page