Skip to main content

A package for DEER and PRE predictions based on molecular dynamics ensembles. Can be installed with pip.

Project description

Build Status Documentation Status DOI SWH

DEER-PREdict

Overview

A package for double electron-electron resonance (DEER) and paramagnetic relaxation enhancement (PRE) predictions from molecular dynamics ensembles.

Installation

To install DEER-PREdict, use the PyPI package:

  pip install DEERPREdict

or clone the repo:

  git clone https://github.com/KULL-Centre/DEERpredict.git
  cd DEERpredict

  pip install -e . 

The software requires Python 3.6-3.9.

In case of dependency issues, consider installing FRETpredict in a new environment

  conda create -n myenv python=3.9 pip
  conda activate myenv
  pip install -e .

Documentation

Documentation Status

Testing

Run all the tests in one go

  cd DEERpredict

  python -m pytest

or run single tests, e.g.

  cd DEERpredict

  python -m pytest tests/test_PRE.py::test_ACBP
  python -m pytest tests/test_DEER.py::test_T4L

Authors

Giulio Tesei (@gitesei)

João M Martins (@joaommartins)

Micha BA Kunze (@mbakunze)

Ramon Crehuet (@rcrehuet)

Kresten Lindorff-Larsen (@lindorff-larsen)

Article

Tesei G, Martins JM, Kunze MBA, Wang Y, Crehuet R, et al. (2021) DEER-PREdict: Software for efficient calculation of spin-labeling EPR and NMR data from conformational ensembles. PLOS Computational Biology 17(1): e1008551. https://doi.org/10.1371/journal.pcbi.1008551

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

deerpredict-0.2.1.tar.gz (1.2 MB view details)

Uploaded Source

Built Distribution

DEERPREdict-0.2.1-py2.py3-none-any.whl (1.2 MB view details)

Uploaded Python 2 Python 3

File details

Details for the file deerpredict-0.2.1.tar.gz.

File metadata

  • Download URL: deerpredict-0.2.1.tar.gz
  • Upload date:
  • Size: 1.2 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/6.0.0 pkginfo/1.9.6 requests/2.29.0 requests-toolbelt/0.9.1 tqdm/4.65.0 CPython/3.8.16

File hashes

Hashes for deerpredict-0.2.1.tar.gz
Algorithm Hash digest
SHA256 24bf364d2950b74872ba45c6842390c59991b0ae68fbee8706ba137a9c40cd63
MD5 518e87871e5e8fb403d6569379c3c336
BLAKE2b-256 41f121d67baa7e4978317256a09048e244379e9cf3a0f776649951047b50a078

See more details on using hashes here.

File details

Details for the file DEERPREdict-0.2.1-py2.py3-none-any.whl.

File metadata

  • Download URL: DEERPREdict-0.2.1-py2.py3-none-any.whl
  • Upload date:
  • Size: 1.2 MB
  • Tags: Python 2, Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/6.0.0 pkginfo/1.9.6 requests/2.29.0 requests-toolbelt/0.9.1 tqdm/4.65.0 CPython/3.8.16

File hashes

Hashes for DEERPREdict-0.2.1-py2.py3-none-any.whl
Algorithm Hash digest
SHA256 ca03bde3e05ffed8d0fd33a020fe05f75469b989425b3968e174d17c816dc876
MD5 96574678be8ca656c6472fd4682a6dc1
BLAKE2b-256 44a1c36476c76eef3a887c42cb3b6367d93d7233a8801c89183e859cd919a9e4

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page