Skip to main content

Delighted API Python Client.

Project description

[![Build Status](](

# Delighted API Python Client

Official Python client for the [Delighted API](

## Installation

pip install --upgrade delighted


easy_install --upgrade delighted

### Upgrading from delighted-python

If you previously used the python package named `delighted-python`, please note that the package name is now just `delighted`.

## Configuration

To get started, you need to configure the client with your secret API key.

import delighted
delighted.api_key = 'YOUR_API_KEY'

For further options, read the [advanced configuration section](#advanced-configuration).

**Note:** Your API key is secret, and you should treat it like a password. You can find your API key in your Delighted account, under *Settings* > *API*.

## Usage

Adding/updating people and scheduling surveys:

# Add a new person, and schedule a survey immediately
person1 = delighted.Person.create(email='')

# Add a new person, and schedule a survey after 1 minute (60 seconds)
person2 = delighted.Person.create(email='', delay=60)

# Add a new person, but do not schedule a survey
person3 = delighted.Person.create(email='', send=False)

# Add a new person with full set of attributes, including a custom question
# product name, and schedule a survey with a 30 second delay
person4 = delighted.Person.create(
name='Joe Bloggs',
properties={'customer_id': 123, 'country': 'USA',
'question_product_name': 'The London Trench'},

# Update an existing person (identified by email), adding a name, without
# scheduling a survey
updated_person1 = delighted.Person.create(email='',
name='James Scott', send=False)

Unsubscribing people:

# Unsubscribe an existing person

Listing people who have unsubscribed:

# List all people who have unsubscribed, 20 per page, first 2 pages

Listing people whose emails have bounced:

# List all people whose emails have bounced, 20 per page, first 2 pages

Deleting pending survey requests

# Delete all pending (scheduled but unsent) survey requests for a person, by email.

Adding survey responses:

# Add a survey response, score only
survey_response1 = delighted.SurveyResponse.create(,

# Add *another* survey response (for the same person), score and comment
survey_response2 = delighted.SurveyResponse.create(,
comment='Really nice.')

Retrieving a survey response:

# Retrieve an existing survey response
survey_response3 = delighted.SurveyResponse.retrieve('123')

Updating survey responses:

# Update a survey response score
survey_response4 = delighted.SurveyResponse.retrieve('234')
survey_response4.score = 10
# <delighted.SurveyResponse object at 0xabc123>

# Update (or add) survey response properties
survey_response4.person_properties = {'segment': 'Online'}
# <delighted.SurveyResponse object at 0xabc123>

# Update person who recorded the survey response
survey_response4.person = '321'
# <delighted.SurveyResponse object at 0xabc123>

Listing survey responses:

# List all survey responses, 20 per page, first 2 pages
survey_responses_page1 = delighted.SurveyResponse.all()
survey_responses_page2 = delighted.SurveyResponse.all(page=2)

# List all survey responses, 20 per page, expanding person object
survey_responses_page1_expanded = delighted.SurveyResponse.all(expand=['person'])
# <delighted.Person object at 0xabc123>

# List all survey responses, 20 per page, for a specific trend (ID: 123)
survey_responses_page1_trend = delighted.SurveyResponse.all(trend='123')

# List all survey responses, 20 per page, in reverse chronological order (newest first)
survey_responses_page1_desc = delighted.SurveyResponse.all(order='desc')

# List all survey responses, 100 per page, page 5, with a time range
import pytz
timezone = pytz.timezone('America/Chicago')
filtered_survey_responses = delighted.SurveyResponse.all(
since=timezone.localize(datetime.datetime(2014, 3, 1)),
until=timezone.localize(datetime.datetime(2014, 4, 30))

Retrieving metrics:

# Get current metrics, 30-day simple moving average, from most recent response
metrics = delighted.Metrics.retrieve()

# Get current metrics, 30-day simple moving average, from most recent response,
# for a specific trend (ID: 123)
metrics = delighted.Metrics.retrieve(trend='123')

# Get metrics, for given time range
import pytz
timezone = pytz.timezone('America/Chicago')
metrics = delighted.Metrics.retrieve(
since=timezone.localize(datetime.datetime(2013, 10, 1)),
until=timezone.localize(datetime.datetime(2013, 11, 1))

## Rate limits

If a request is rate limited, a `TooManyRequestsError` exception is raised. You can rescue that exception to implement exponential backoff or retry strategies. The exception provides a `retry_after` attribute to tell you how many seconds you should wait before retrying. For example:

metrics = delighted.Metrics.retrieve()
except delighted.errors.TooManyRequestsError as err:
retry_after_seconds = err.retry_after
# wait for retry_after_seconds before retrying
# add your retry strategy here ...

## <a name="advanced-configuration"></a> Advanced configuration & testing

The following options are configurable for the client:

delighted.api_base_url # default: ''
delighted.http_adapter # default: delighted.HTTPAdapter

By default, a shared instance of `delighted.Client` is created lazily in `delighted.get_shared_client()`. If you want to create your own client, perhaps for test or if you have multiple API keys, you can:

# Create an custom client instance, and pass as last argument to resource actions
import delighted
from delighted import Client
client = Client(api_key='API_KEY',
metrics_from_custom_client = delighted.Metrics.retrieve(client=client)

# Or, you can set Delighted.shared_client yourself
delighted.shared_client = delighted.Client(
metrics_from_custom_shared_client = delighted.Metrics.retrieve()

## Supported versions

- 2.6+, 3.3+ (PyPy supported)

## Contributing

1. Fork it
2. Create your feature branch (`git checkout -b my-new-feature`)
3. Run the tests (`tox`)
4. Commit your changes (`git commit -am 'Add some feature'`)
5. Push to the branch (`git push origin my-new-feature`)
6. Create new Pull Request

## Releasing

1. Bump the version in `delighted/`.
2. Update the README and CHANGELOG as needed.
3. Tag the commit for release.
4. Register and update the package against PyPI's test server with `python register -r pypitest` and then `python sdist upload -r pypitest`.
5. If (4) works, push to PyPI's live servers with `python register -r pypi` and `python sdist upload -r pypi`.

## Author

Originally by [Jason Pearson]( Graciously transfered and now officially maintained by Delighted.

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

delighted-2.1.0.tar.gz (9.5 kB view hashes)

Uploaded source

Supported by

AWS AWS Cloud computing Datadog Datadog Monitoring Facebook / Instagram Facebook / Instagram PSF Sponsor Fastly Fastly CDN Google Google Object Storage and Download Analytics Huawei Huawei PSF Sponsor Microsoft Microsoft PSF Sponsor NVIDIA NVIDIA PSF Sponsor Pingdom Pingdom Monitoring Salesforce Salesforce PSF Sponsor Sentry Sentry Error logging StatusPage StatusPage Status page