Intel extension for peft with PyTorch and DENAS
Project description
Deltatuner
Deltatuner is an extension for Peft to improve LLM fine-tuning speed through multiple optimizations, including: leverage the compact model constructor DE-NAS to construct/modify the compact delta layers in a hardware-aware and train-free approach, and adding more new deltatuning algorithms.
Introduction
Key Components
- Supported parameter efficient finetuning algorithms
- De-Nas: Automatically construct compact and optimal delta layers with train-free and hardware-aware mode (more details here)
- step1: Generate search space for delta layers
- step2: Search algorithm populates delta layers for LM
- step3: Train-free score evaluates LM with adaptive delta layers
Features
- Easy-to-use: provide package install, just need to inject few codes into the original code
- Auto-tuning: automatically select best algorithms and delta structure for finetuning model
Values
- Saving computation power: reduce the computation power and time required to fine-tune a model by reducing parameter size as well as memory footprint.
- Improve accuracy: ensure same or no accuracy regression.
Get Started
Installation
- install the python package
pip install deltatuner
Fast Fine-tuning on Base models
Below is an example of optimizing MPT model by adding the following few-lines to use the delatuner optimizations. It use the DE-NAS in delatuner to optimize a LLM with LoRA layers to a LLM with compact LoRA layers, so as to efficiently improve the LLM fine-tuning process in peak memory reduction and time speedup.
from delta import deltatuner, deltatuner_args
from transformers import AutoModelForCausalLM, AutoTokenizer
from peft import LoraConfig, get_peft_model
from deltatuner import deltatuner, deltatuner_args
# import model from huggingface
model_id = "mosaicml/mpt-7b"
model = AutoModelForCausalLM.from_pretrained(model_id)
tokenizer = AutoTokenizer.from_pretrained(model_id)
# adding the lora componenents with peft
config = LoraConfig()
lora_model = get_peft_model(model, config)
# delatuner optimize the model with best lora layer configuration
deltatuning_args = deltatuner_args.DeltaTunerArguments()
deltatuner_model = deltatuner.optimize(model=lora_model, tokenizer=tokenizer, deltatuning_args=deltatuning_args)
...
API reference
In above examples, deltatuner.optimize
is a python function to using deltatuner supported optimization algorithms to optimize the model.
def optimize(model, tokenizer, algo: str="auto", deltatuning_args: DeltaTunerArguments=None) -> DeltaTunerModel:
'''
Parameters:
model - a PreTrainedModel or LoraModel. Specifies what model should be optimized
tokenizer - a tokenizer for preprocess text
algo (str, optional) – the algorithm. Specifies what type of adapter algorithm (default: “auto”)
"auto" – If the input model is mpt, the algorithm is ssf; elif the algorithm is lora
"lora" – use the lora algotihm
"ssf" – use the ssf algotithm
deltatuning_args (optional) – the deltatuner configuration. Specifically, deltatuning_args.denas is to use the denas in the optimization (default: True)
Return
DeltaTunerModel - a wrapper of model, which composed of the original properties/function together with adavance properties/function provided by deltatuner
'''
Detailed examples
Please refer to example page for more use cases on fine-tuning other LLMs with the help of DeltaTuner.
Model supported matrix
Causal Language Modeling
Model | LoRA | SSF |
---|---|---|
GPT-2 | ✅ | |
GPT-J | ✅ | ✅ |
Bloom | ✅ | ✅ |
OPT | ✅ | ✅ |
GPT-Neo | ✅ | ✅ |
Falcon | ✅ | ✅ |
LLaMA | ✅ | ✅ |
MPT | ✅ | ✅ |
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
File details
Details for the file deltatuner-1.0b202310231007.tar.gz
.
File metadata
- Download URL: deltatuner-1.0b202310231007.tar.gz
- Upload date:
- Size: 24.7 kB
- Tags: Source
- Uploaded using Trusted Publishing? Yes
- Uploaded via: twine/4.0.2 CPython/3.11.6
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 996e195edaef7ecb4481cb74c02a1a28f9e1ab4251883b7431500ba86b7c02ef |
|
MD5 | b0d0af4bc0a6cfe51f5a2d59f60970bf |
|
BLAKE2b-256 | 82c33f9c87dd67cc44ec6adc1a93865fa259e69a6940f6104279f5699a3eb87f |