Minimal implementation of Deep Joint Demosaicking and Denoising [Gharbi2016]
Project description
# Deep Joint Demosaicking and Denoising SiGGRAPH Asia 2016
Michaël Gharbi gharbi@mit.edu Gaurav Chaurasia Sylvain Paris Frédo Durand
A minimal pytorch implementation of “Deep Joint Demosaicking and Denoising” [Gharbi2016]
# Installation
From this repo:
`shell python setup.py install `
Using pip:
`shell pip install demosaicnet `
Then run the demo script with:
`shell demosaicnet_demo `
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
demosaicnet-0.0.6.tar.gz
(3.6 MB
view hashes)
Built Distribution
Close
Hashes for demosaicnet-0.0.6-py3-none-any.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | ea7f9217dfddbe8c030a3a567edd62399f4cef5f2708dbd3aac0c95e57c1144a |
|
MD5 | 041b058cf287df8c854e701fea052eb1 |
|
BLAKE2b-256 | 3bc69f6bfc44d3c7fafb16830208783206014ce4cafdf5fa00d4f18ea5c0e40d |