Skip to main content

Debiaser for Multiple Variables(DEMV) is a pre-processing algorithm for binary and multi-class datasets that mitigates bias by perfectly balancing the sensitive groups identified by each possible sensitive variables' value and each label's value

Project description

DEMV : Debiaser for Multiple Variables

GitHub last commit License: AGPL v3

Table of contents

Citation request

Please cite our papers if you use DEMV in your experiments:

Giordano d’Aloisio, Andrea D’Angelo, Antinisca Di Marco, Giovanni Stilo, Debiaser for Multiple Variables to enhance fairness in classification tasks, Information Processing & Management, Volume 60, Issue 2, 2023, 103226, ISSN 0306-4573, https://doi.org/10.1016/j.ipm.2022.103226

@article{daloisio_debiaser_2023,
title = {Debiaser for Multiple Variables to enhance fairness in classification tasks},
journal = {Information Processing & Management},
volume = {60},
number = {2},
pages = {103226},
year = {2023},
issn = {0306-4573},
doi = {https://doi.org/10.1016/j.ipm.2022.103226},
url = {https://www.sciencedirect.com/science/article/pii/S0306457322003272},
author = {Giordano d’Aloisio and Andrea D’Angelo and Antinisca {Di Marco} and Giovanni Stilo},
keywords = {Machine learning, Bias and Fairness, Multi-class classification, Preprocessing algorithm, Equality},
}

d’Aloisio, G., Stilo, G., Di Marco, A., D’Angelo, A. (2022). Enhancing Fairness in Classification Tasks with Multiple Variables: A Data- and Model-Agnostic Approach. In: Boratto, L., Faralli, S., Marras, M., Stilo, G. (eds) Advances in Bias and Fairness in Information Retrieval. BIAS 2022. Communications in Computer and Information Science, vol 1610. Springer, Cham. https://doi.org/10.1007/978-3-031-09316-6_11

@inproceedings{d2022enhancing,
  title={Enhancing Fairness in Classification Tasks with Multiple Variables: A Data-and Model-Agnostic Approach},
  author={d’Aloisio, Giordano and Stilo, Giovanni and Di Marco, Antinisca and D’Angelo, Andrea},
  booktitle={International Workshop on Algorithmic Bias in Search and Recommendation},
  pages={117--129},
  year={2022},
  organization={Springer}
}

General info

DEMV is a Debiaser for Multiple Variables that aims to increase Fairness in any given dataset, both binary and categorical, with one or more sensitive variables, while keeping the accuracy of the classifier as high as possible. The main idea behind the proposed method is that to enhance the classifier’s fairness during pre-processing effectively is necessary to consider all possible combinations of the values of the sensitive variables and the label’s values for the definition of the so-called sensitive groups.

We approach the problem by recursively identifying all the possible groups given by combining all the values of the sensible variables with the belonging label (class). Next, for each group, we compute its expected (𝑊𝑒𝑥𝑝) and observed (𝑊𝑜𝑏𝑠) sizes and look at the ratio among these two values. If 𝑊𝑒𝑥𝑝/𝑊𝑜𝑏𝑠 = 1, it implies that the group is fully balanced. Otherwise, if the ratio is less than one, the group size is larger than expected, so we must remove an element from the considered group accordingly to a chosen deletion strategy. Finally, if the ratio is greater than one, the group is smaller than expected, so we have to add another item accordingly to a generation strategy. For each group, we recursively repeat this balancing operation until 𝑊𝑒𝑥𝑝/𝑊𝑜𝑏𝑠 converge to one. It is worth noting that, in order to keep a high level of accuracy, the new items added to a group should be coherent in their values with the already existing ones.

The papers describing our work are available at:

DEMV class description

Attributes

  • round_level : float

    Tolerance value to balance the sensitive groups

  • debug : bool

    Prints w_exp/w_obs, useful for debugging

  • stop : int

    Maximum number of balance iterations

  • iter : int

    Maximum number of iterations

Methods

  • __init__(self, sensitive_vars, round_level=1, stop=10000, verbose=False)

    Args
    ----------
      sensitive_vars : list
          List of sensitive variable names
      round_level : float, optional
          Tolerance value to balance the sensitive groups (default is 1)
      stop : int, optional
          Maximum number of iterations to balance the sensitive groups (default is 10000)
      verbose : bool, optional
          Prints w_exp/w_obs, useful for debugging (default is False)
    
  • fit(self, x: pd.DataFrame, y: np.ndarray)

    Balances the dataset's sensitive groups

      Args
      ----------
      x : pd.DataFrame
          Dataset to be balanced
      y : array-like
          Labels of the dataset
    
      Returns
      -------
       x: Balanced dataset
       y: Balanced labels of the dataset
    
  • transform(self, x: pd.DataFrame, y: np.ndarray)

    Balances the dataset's sensitive groups

      Args
      ----------
      x : pd.DataFrame
          Dataset to be balanced
      y : array-like
          Labels of the dataset
    
      Returns
      -------
       x: Balanced dataset
       y: Balanced labels of the dataset
    
  • fit_transform(self, x: pd.DataFrame, y: np.ndarray)

    Balances the dataset's sensitive groups

      Args
      ----------
      x : pd.DataFrame
          Dataset to be balanced
      y : array-like
          Labels of the dataset
    
      Returns
      -------
       x: Balanced dataset
       y: Balanced labels of the dataset
    
  • get_iters(self)

    Gets the maximum number of iterations
    
      Returns
      -------
      int:
          maximum number of iterations
    
  • get_disparities(self) Returns the list of w_exp/w_obs

      Returns:
      list: list of disparities values
    

Example usage

In the following we show an example usage of our algorithm:

from demv import DEMV
import pandas as pd

df = pd.read_csv('some_data.csv')
protected_attrs = ['s1','s2']
label = 'l'

demv = DEMV(sensitive_vars = protected_attrs, round_level = 1)
x = df.drop(label, axis=1)
y = df[label]
x_new, y_new = demv.fit_transform(x, y)
print('Maximum number of iterations: ',demv.get_iters())

Credits

The original paper was written by Giordano d'Aloisio, Giovanni Stilo, Antinisca di Marco and Andrea D'Angelo. This work is partially supported by Territori Aperti a project funded by Fondo Territori Lavoro e Conoscenza CGIL CISL UIL, by SoBigData-PlusPlus H2020-INFRAIA-2019-1 EU project, contract number 871042 and by “FAIR-EDU: Promote FAIRness in EDUcation institutions” a project founded by the University of L’Aquila. All the numerical simulations have been realized mostly on the Linux HPC cluster Caliban of the High-Performance Computing Laboratory of the Department of Information Engineering, Computer Science and Mathematics (DISIM) at the University of L’Aquila.

License

This work is licensed under AGPL 3.0 license.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

demv-1.0.2.tar.gz (45.6 kB view details)

Uploaded Source

Built Distribution

demv-1.0.2-py3-none-any.whl (31.0 kB view details)

Uploaded Python 3

File details

Details for the file demv-1.0.2.tar.gz.

File metadata

  • Download URL: demv-1.0.2.tar.gz
  • Upload date:
  • Size: 45.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.9.12

File hashes

Hashes for demv-1.0.2.tar.gz
Algorithm Hash digest
SHA256 f80c11d21b7a576db0a713d83c3058a2eb89b8f21b716479c9fd7d69fb25720c
MD5 fe68adfd80959b489c1ad6586fd915c6
BLAKE2b-256 52f0e46e775b8247d6a3e2f2b9a3bfb31ebee029831b267fba327dafe90610a1

See more details on using hashes here.

File details

Details for the file demv-1.0.2-py3-none-any.whl.

File metadata

  • Download URL: demv-1.0.2-py3-none-any.whl
  • Upload date:
  • Size: 31.0 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.9.12

File hashes

Hashes for demv-1.0.2-py3-none-any.whl
Algorithm Hash digest
SHA256 5dfaf241a8f306a6e638290bf80bbab3c7db2ff12e4aa8ec90cd82b4ba32c465
MD5 6fb00d8a77a467c0038a35bc25b539b6
BLAKE2b-256 077650d200b5cfb22930fae6cf00deddd0349d8355506dfcff9e8fb7d2392b00

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page