A densenet implementation using tensorflow2
Project description
DenseNet implementation using Tensorflow 2
Quickstart
$ ./bin/start
Setup and use docker
Build the docker image,
$ docker build --rm -f dockerfiles/cpu-jupiter.Dockerfile -t sign-language-recognition:latest .
and now run the image
$ docker run -v "$(pwd)/notebooks:/tf/notebooks" --rm -u $(id -u):$(id -g) -p 6006:6006 -p 8888:8888 sign-language-recognition:latest
Visit that link, hey look your jupyter notebooks are ready to be created. Changes in ./notebooks will be saved.
If you want, you can attach a shell to the running container
$ docker exec -it <container-id> /bin/sh -c "[ -e /bin/bash ] && /bin/bash || /bin/sh"
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distributions
No source distribution files available for this release.
See tutorial on generating distribution archives.
Built Distribution
densenet-0.1-py3-none-any.whl
(5.6 kB
view hashes)