Skip to main content

A densenet implementation using tensorflow2

Project description

DenseNet implementation using Tensorflow 2


$ ./bin/start

Setup and use docker

Build the docker image,

$ docker build --rm -f dockerfiles/cpu-jupiter.Dockerfile -t sign-language-recognition:latest .

and now run the image

$ docker run -v "$(pwd)/notebooks:/tf/notebooks" --rm -u $(id -u):$(id -g) -p 6006:6006 -p 8888:8888 sign-language-recognition:latest

Visit that link, hey look your jupyter notebooks are ready to be created. Changes in ./notebooks will be saved.

If you want, you can attach a shell to the running container

$ docker exec -it <container-id> /bin/sh -c "[ -e /bin/bash ] && /bin/bash || /bin/sh"

Project details

Release history Release notifications | RSS feed

This version


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Files for densenet, version 0.1
Filename, size File type Python version Upload date Hashes
Filename, size densenet-0.1-py3-none-any.whl (5.6 kB) File type Wheel Python version py3 Upload date Hashes View

Supported by

AWS AWS Cloud computing Datadog Datadog Monitoring Facebook / Instagram Facebook / Instagram PSF Sponsor Fastly Fastly CDN Google Google Object Storage and Download Analytics Huawei Huawei PSF Sponsor Microsoft Microsoft PSF Sponsor NVIDIA NVIDIA PSF Sponsor Pingdom Pingdom Monitoring Salesforce Salesforce PSF Sponsor Sentry Sentry Error logging StatusPage StatusPage Status page