Describr is a Python library that provides a convenient way to generate descriptive statistics for datasets.
Project description
README.md
describr is a Python library that provides functionality for descriptive statistics and outlier detection in pandas DataFrames.
Installation
You can install describr using pip:
pip install describr
Example usage
import pandas as pd
import numpy as np
from describr import FindOutliers, DescriptiveStats
Create a sample dataframe
np.random.seed(0)
n = 500
data = {
'MCID': ['MCID_' + str(i) for i in range(1, n + 1)],
'Age': np.random.randint(18, 90, size=n),
'Race': np.random.choice(['White', 'Black', 'Asian', 'Hispanic',''], size=n),
'Educational_Status': np.random.choice(['High School', 'Bachelor', 'Master', 'PhD',''], size=n),
'Gender': np.random.choice(['Male', 'Female', ''], size=n),
'ER_COST': np.random.uniform(500, 5000, size=n),
'ER_VISITS': np.random.randint(0, 10, size=n),
'IP_COST': np.random.uniform(5000, 20000, size=n),
'IP_ADMITS': np.random.randint(0, 5, size=n),
'CHF': np.random.choice([0, 1], size=n),
'COPD': np.random.choice([0, 1], size=n),
'DM': np.random.choice([0, 1], size=n),
'ASTHMA': np.random.choice([0, 1], size=n),
'HYPERTENSION': np.random.choice([0, 1], size=n),
'SCHIZOPHRENIA': np.random.choice([0, 1], size=n),
'MOOD_DEPRESSED': np.random.choice([0, 1], size=n),
'MOOD_BIPOLAR': np.random.choice([0, 1], size=n),
'TREATMENT': np.random.choice(['Yes', 'No'], size=n)
}
df = pd.DataFrame(data)
Parameters
df: name of dataframe
id_col: Primary key of the dataframe; accepts string or integer or float.
group_col: A Column to group by, It must be a binary column. Strings or integers are acceptable.
positive_class: This is the response value for the primary outcome of interest. For instance, positive value for a Treatment cohort is 'Yes' or 1 otherwise 'No' or 0, respectively. Strings or integers are acceptable.
continuous_var_summary: User specifies measures of central tendency, only mean and median are acceptable. This parameter is case insensitive.
Example usage of FindOutliers Class
This returns a dataframe (outliers_flag_df) with outlier_flag column (outlier_flag =1: record contains one or more ouliers). Tukey's IQR method is used to detect outliers in the data
outliers_flag=FindOutliers(df=df, id_col='MCID', group_col='TREATMENT')
outliers_flag_df=outliers_flag.flag_outliers()
This example counts number of rows with outliers stratified by a defined grouping variable
outliers_flag.count_outliers()
This example removes all outliers
df2=outliers_flag.remove_outliers()
df2.shape
Example usage of DescriptiveStats Class
descriptive_stats = DescriptiveStats(df=df, id_col='MCID', group_col='TREATMENT', positive_class='Yes', continuous_var_summary='median')
Gets statistics for binary and categorical variables and returns a dataframe.
binary_stats_df = descriptive_stats.get_binary_stats()
Gets mean and standard deviation for continuous variables and returns a dataframe.
continuous_stats_mean_df = descriptive_stats.get_continuous_mean_stats()
Gets median and interquartile range for continuous variables and returns a dataframe.
continuous_stats_median_df = descriptive_stats.get_continuous_median_stats()
Computes summary statistics for binary and continuous variables based on defined measure of central tendency. Method returns a dataframe.
descriptive_stats.compute_descriptive_stats()
summary_stats = descriptive_stats.summary_stats()
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file describr-0.0.31.tar.gz
.
File metadata
- Download URL: describr-0.0.31.tar.gz
- Upload date:
- Size: 6.6 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.12.1
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 1a64fd7e36f6709944a4f88d63635f83613f343663cddb7b2b7e41fba140d1c9 |
|
MD5 | bc84962c350601498a782a1a12194611 |
|
BLAKE2b-256 | 79b6f8508682d3f88a1732de3cfbcc8d1ff889174c4e90551374e2252569b549 |
File details
Details for the file describr-0.0.31-py3-none-any.whl
.
File metadata
- Download URL: describr-0.0.31-py3-none-any.whl
- Upload date:
- Size: 6.3 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.12.1
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 8057ee6a95c04af49b233266d9f7814b67cd1ea179171856edd2c5167a0c91d6 |
|
MD5 | 506b70bce3887597bed8ba704759bfff |
|
BLAKE2b-256 | 2d73b33cf46cec122fca1c8083d8862bec632e7543d237119575410d8b3c5c2b |