Skip to main content

Describr is a Python library that provides a convenient way to generate descriptive statistics for datasets.

Project description

README.md

describr is a Python library that provides functionality for descriptive statistics and outlier detection in pandas DataFrames.

Installation

You can install describr using pip:

pip install describr

Example usage

import pandas as pd
import numpy as np
from describr import FindOutliers, DescriptiveStats

Create a sample dataframe

np.random.seed(0)
n = 500

data = {
    'MCID': ['MCID_' + str(i) for i in range(1, n + 1)],
    'Age': np.random.randint(18, 90, size=n),
    'Race': np.random.choice(['White', 'Black', 'Asian', 'Hispanic',''], size=n),
    'Educational_Status': np.random.choice(['High School', 'Bachelor', 'Master', 'PhD',''], size=n),
    'Gender': np.random.choice(['Male', 'Female', ''], size=n),
    'ER_COST': np.random.uniform(500, 5000, size=n),
    'ER_VISITS': np.random.randint(0, 10, size=n),
    'IP_COST': np.random.uniform(5000, 20000, size=n),
    'IP_ADMITS': np.random.randint(0, 5, size=n),
    'CHF': np.random.choice([0, 1], size=n),
    'COPD': np.random.choice([0, 1], size=n),
    'DM': np.random.choice([0, 1], size=n),
    'ASTHMA': np.random.choice([0, 1], size=n),
    'HYPERTENSION': np.random.choice([0, 1], size=n),
    'SCHIZOPHRENIA': np.random.choice([0, 1], size=n),
    'MOOD_DEPRESSED': np.random.choice([0, 1], size=n),
    'MOOD_BIPOLAR': np.random.choice([0, 1], size=n),
    'TREATMENT': np.random.choice(['Yes', 'No'], size=n)
}

df = pd.DataFrame(data)

Parameters

df: name of dataframe

id_col: Primary key of the dataframe; accepts string or integer or float.

group_col: A Column to group by, It must be a binary column. Strings or integers are acceptable.

positive_class: This is the response value for the primary outcome of interest. For instance, positive value for a Treatment cohort is 'Yes' or 1 otherwise 'No' or 0, respectively. Strings or integers are acceptable.

continuous_var_summary: Users specifies measures of central tendency, only mean and median are acceptable. This parameter is case insensitive.

Example usage of FindOutliers Class

This returns a dataframe (outliers_flag_df) with outlier_flag column (outlier_flag =1: record contains one or more ouliers). Tukey's IQR method is used to detect outliers in the data

outliers_flag=FindOutliers(df=df, id_col='MCID', group_col='TREATMENT')
outliers_flag_df=outliers_flag.flag_outliers()

This example counts number of rows with outliers stratified by a defined grouping variable

outliers_flag.count_outliers()

This example removes all outliers

df2=outliers_flag.remove_outliers()
df2.shape

Example usage of DescriptiveStats Class

descriptive_stats = DescriptiveStats(df=df, id_col='MCID', group_col='TREATMENT', positive_class='Yes', continuous_var_summary='median')

Gets statistics for binary and categorical variables and returns a dataframe.

binary_stats_df = descriptive_stats.get_binary_stats()

Gets mean and standard deviation for continuous variables and returns a dataframe.

continuous_stats_mean_df = descriptive_stats.get_continuous_mean_stats()

Gets median and interquartile range for continuous variables and returns a dataframe.

continuous_stats_median_df = descriptive_stats.get_continuous_median_stats()

Computes summary statistics for binary and continuous variables based on defined measure of central tendency. Method returns a dataframe.

descriptive_stats.compute_descriptive_stats()
summary_stats = descriptive_stats.summary_stats()

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

describr-0.0.18.tar.gz (7.3 kB view details)

Uploaded Source

Built Distribution

describr-0.0.18-py3-none-any.whl (7.1 kB view details)

Uploaded Python 3

File details

Details for the file describr-0.0.18.tar.gz.

File metadata

  • Download URL: describr-0.0.18.tar.gz
  • Upload date:
  • Size: 7.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.12.1

File hashes

Hashes for describr-0.0.18.tar.gz
Algorithm Hash digest
SHA256 ceaa996bb86f02d2d16a766e459a32abf994a8b32ff5249a90893c1a196fe261
MD5 4c1c5032a36b8b601d3dc9d100925ce5
BLAKE2b-256 a147c5a7742b95c61babffc068f6a5f70e2133832e0f6420656c92feb32e205e

See more details on using hashes here.

File details

Details for the file describr-0.0.18-py3-none-any.whl.

File metadata

  • Download URL: describr-0.0.18-py3-none-any.whl
  • Upload date:
  • Size: 7.1 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.12.1

File hashes

Hashes for describr-0.0.18-py3-none-any.whl
Algorithm Hash digest
SHA256 6dae8c2804f282a4f30e9084e70918eabfc751fb2f8c2059e1e763bc0ab1549d
MD5 ea6b22476a717811f962f29a66b09c2d
BLAKE2b-256 d0a02e06f154c9334f5c5c2a6742ffdaf69ba06d64b1370f84de45151508273d

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page