Skip to main content

Describr is a Python library that provides a convenient way to generate descriptive statistics for datasets.

Project description

README.md

describr is a Python library that provides functionality for descriptive statistics and outlier detection in pandas DataFrames.

Installation

You can install describr using pip:

pip install describr

Example usage

import pandas as pd
import numpy as np
from describr import FindOutliers, DescriptiveStats

Create a sample dataframe

np.random.seed(0)
n = 500

data = {
    'MCID': ['MCID_' + str(i) for i in range(1, n + 1)],
    'Age': np.random.randint(18, 90, size=n),
    'Race': np.random.choice(['White', 'Black', 'Asian', 'Hispanic',''], size=n),
    'Educational_Status': np.random.choice(['High School', 'Bachelor', 'Master', 'PhD',''], size=n),
    'Gender': np.random.choice(['Male', 'Female', ''], size=n),
    'ER_COST': np.random.uniform(500, 5000, size=n),
    'ER_VISITS': np.random.randint(0, 10, size=n),
    'IP_COST': np.random.uniform(5000, 20000, size=n),
    'IP_ADMITS': np.random.randint(0, 5, size=n),
    'CHF': np.random.choice([0, 1], size=n),
    'COPD': np.random.choice([0, 1], size=n),
    'DM': np.random.choice([0, 1], size=n),
    'ASTHMA': np.random.choice([0, 1], size=n),
    'HYPERTENSION': np.random.choice([0, 1], size=n),
    'SCHIZOPHRENIA': np.random.choice([0, 1], size=n),
    'MOOD_DEPRESSED': np.random.choice([0, 1], size=n),
    'MOOD_BIPOLAR': np.random.choice([0, 1], size=n),
    'TREATMENT': np.random.choice(['Yes', 'No'], size=n)
}

df = pd.DataFrame(data)

Parameters

df: name of dataframe

id_col: Primary key of the dataframe; accepts string or integer or float.

group_col: A Column to group by, It must be a binary column. Strings or integers are acceptable.

positive_class: This is the response value for the primary outcome of interest. For instance, positive value for a Treatment cohort is 'Yes' or 1 otherwise 'No' or 0, respectively. Strings or integers are acceptable.

continuous_var_summary: Users specifies measures of central tendency, only mean and median are acceptable. This parameter is case insensitive.

Example usage of FindOutliers Class

This returns a dataframe (outliers_flag_df) with outlier_flag column (outlier_flag =1: record contains one or more ouliers). Tukey's IQR method is used to detect outliers in the data

outliers_flag=FindOutliers(df=df, id_col='MCID', group_col='TREATMENT')
outliers_flag_df=outliers_flag.flag_outliers()

This example counts number of rows with outliers stratified by a defined grouping variable

outliers_flag.count_outliers()

This example removes all outliers

df2=outliers_flag.remove_outliers()
df2.shape

Example usage of DescriptiveStats Class

descriptive_stats = DescriptiveStats(df=df, id_col='MCID', group_col='TREATMENT', positive_class='Yes', continuous_var_summary='median')

Gets statistics for binary and categorical variables and returns a dataframe.

binary_stats_df = descriptive_stats.get_binary_stats()

Gets mean and standard deviation for continuous variables and returns a dataframe.

continuous_stats_mean_df = descriptive_stats.get_continuous_mean_stats()

Gets median and interquartile range for continuous variables and returns a dataframe.

continuous_stats_median_df = descriptive_stats.get_continuous_median_stats()

Computes summary statistics for binary and continuous variables based on defined measure of central tendency. Method returns a dataframe.

descriptive_stats.compute_descriptive_stats()
summary_stats = descriptive_stats.summary_stats()

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

describr-0.0.19.tar.gz (7.3 kB view details)

Uploaded Source

Built Distribution

describr-0.0.19-py3-none-any.whl (7.1 kB view details)

Uploaded Python 3

File details

Details for the file describr-0.0.19.tar.gz.

File metadata

  • Download URL: describr-0.0.19.tar.gz
  • Upload date:
  • Size: 7.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.12.1

File hashes

Hashes for describr-0.0.19.tar.gz
Algorithm Hash digest
SHA256 21c6d9d4a0fde59db8061c7e7976e48fb40e3cff055e46ea436385572facc873
MD5 b5caf3b101bcf576d308e9e53ba6a67f
BLAKE2b-256 aa314ca8129a477659fdd0cf8e809baa24aae59e31c4e2d4523f8b2cad9865da

See more details on using hashes here.

File details

Details for the file describr-0.0.19-py3-none-any.whl.

File metadata

  • Download URL: describr-0.0.19-py3-none-any.whl
  • Upload date:
  • Size: 7.1 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.12.1

File hashes

Hashes for describr-0.0.19-py3-none-any.whl
Algorithm Hash digest
SHA256 eea5a5b45fa66d3e7c601f9df652ae39ba29ffc24c8aa9d71426897a19c5295a
MD5 3c8b89895b55c070019e618d494ccd0f
BLAKE2b-256 57472111b6045b159dabdc3f76cbfe0f7141e2822dcd408ce66f4a92a834a3e4

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page