Skip to main content

Describr is a Python library that provides a convenient way to generate descriptive statistics for datasets.

Project description

README.md

describr is a Python library that provides functionality for descriptive statistics and outlier detection in pandas DataFrames.

Installation

You can install describr using pip:

pip install describr

Example usage

import pandas as pd

import numpy as np

from describr import FindOutliers, DescriptiveStats

Create a sample dataframe

np.random.seed(0)

n = 500



data = {

    'MCID': ['MCID_' + str(i) for i in range(1, n + 1)],

    'Age': np.random.randint(18, 90, size=n),

    'Race': np.random.choice(['White', 'Black', 'Asian', 'Hispanic',''], size=n),

    'Educational_Status': np.random.choice(['High School', 'Bachelor', 'Master', 'PhD',''], size=n),

    'Gender': np.random.choice(['Male', 'Female', ''], size=n),

    'ER_COST': np.random.uniform(500, 5000, size=n),

    'ER_VISITS': np.random.randint(0, 10, size=n),

    'IP_COST': np.random.uniform(5000, 20000, size=n),

    'IP_ADMITS': np.random.randint(0, 5, size=n),

    'CHF': np.random.choice([0, 1], size=n),

    'COPD': np.random.choice([0, 1], size=n),

    'DM': np.random.choice([0, 1], size=n),

    'ASTHMA': np.random.choice([0, 1], size=n),

    'HYPERTENSION': np.random.choice([0, 1], size=n),

    'SCHIZOPHRENIA': np.random.choice([0, 1], size=n),

    'MOOD_DEPRESSED': np.random.choice([0, 1], size=n),

    'MOOD_BIPOLAR': np.random.choice([0, 1], size=n),

    'TREATMENT': np.random.choice(['Yes', 'No'], size=n)

}



df = pd.DataFrame(data)

Parameters

df: name of dataframe

id_col: Primary key of the dataframe; accepts string or integer or float.

group_col: A Column to group by, It must be a binary column. Strings or integers are acceptable.

positive_class: This is the response value for the primary outcome of interest. For instance, positive value for a Treatment cohort is 'Yes' or 1 otherwise 'No' or 0, respectively. Strings or integers are acceptable.

continuous_var_summary: Users specifies measures of central tendency, only mean and median are acceptable. This parameter is case insensitive.

Example usage of FindOutliers Class

This returns a dataframe (outliers_flag_df) with outlier_flag column (outlier_flag =1: record contains one or more ouliers). Tukey's IQR method is used to detect outliers in the data

outliers_flag=FindOutliers(df=df, id_col='MCID', group_col='TREATMENT')

outliers_flag_df=outliers_flag.flag_outliers()

This example counts number of rows with outliers stratified by a defined grouping variable

outliers_flag.count_outliers()

This example removes all outliers

df2=outliers_flag.remove_outliers()

df2.shape

Example usage of DescriptiveStats Class

descriptive_stats = DescriptiveStats(df=df, id_col='MCID', group_col='TREATMENT', positive_class='Yes', continuous_var_summary='median')

Get statistics for binary and categorical variables and returns a dataframe.

binary_stats_df = descriptive_stats.get_binary_stats()

Get mean and standard deviation for continuous variables and returns a dataframe.

continuous_stats_mean_df = descriptive_stats.get_continuous_mean_stats()

Get median and interquartile range for continuous variables and returns a dataframe.

continuous_stats_median_df = descriptive_stats.get_continuous_median_stats()

Compute summary statistics for binary and continuous variables based on defined measure of central tendency. Method returns a dataframe.

descriptive_stats.compute_descriptive_stats()

summary_stats = descriptive_stats.summary_stats()

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

describr-0.0.2.tar.gz (7.5 kB view details)

Uploaded Source

Built Distribution

describr-0.0.2-py3-none-any.whl (6.8 kB view details)

Uploaded Python 3

File details

Details for the file describr-0.0.2.tar.gz.

File metadata

  • Download URL: describr-0.0.2.tar.gz
  • Upload date:
  • Size: 7.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.7

File hashes

Hashes for describr-0.0.2.tar.gz
Algorithm Hash digest
SHA256 920da0ebb02d32e0ed6992ff43a8204964fb8e0c444e0838a1bcbae26e3bbe56
MD5 85b119360e940560ca5ccecd19cd2360
BLAKE2b-256 c9fc19912879397d017a720783d8fc5be7db1bd2231b13463222c085fec4ae64

See more details on using hashes here.

File details

Details for the file describr-0.0.2-py3-none-any.whl.

File metadata

  • Download URL: describr-0.0.2-py3-none-any.whl
  • Upload date:
  • Size: 6.8 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.7

File hashes

Hashes for describr-0.0.2-py3-none-any.whl
Algorithm Hash digest
SHA256 1f47749fedaad90b27f1af2857737bf8d4eeea58a60afc7fe255f2f14dac6870
MD5 2061f7783ff5b5c13419ebf132f43de6
BLAKE2b-256 e0fc64eb456c8655e8a4cc7b05d3e3fcf44803c2b75a1dd261c88b0b3ddf735d

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page