Skip to main content

Describr is a Python library that provides a convenient way to generate descriptive statistics for datasets.

Project description

README.md

describr is a Python library that provides functionality for descriptive statistics and outlier detection in pandas DataFrames.

Installation

You can install describr using pip:

pip install describr

Example usage

import pandas as pd
import numpy as np
from describr import FindOutliers, DescriptiveStats

Create a sample dataframe

np.random.seed(0)
n = 500

data = {
    'MCID': ['MCID_' + str(i) for i in range(1, n + 1)],
    'Age': np.random.randint(18, 90, size=n),
    'Race': np.random.choice(['White', 'Black', 'Asian', 'Hispanic',''], size=n),
    'Educational_Status': np.random.choice(['High School', 'Bachelor', 'Master', 'PhD',''], size=n),
    'Gender': np.random.choice(['Male', 'Female', ''], size=n),
    'ER_COST': np.random.uniform(500, 5000, size=n),
    'ER_VISITS': np.random.randint(0, 10, size=n),
    'IP_COST': np.random.uniform(5000, 20000, size=n),
    'IP_ADMITS': np.random.randint(0, 5, size=n),
    'CHF': np.random.choice([0, 1], size=n),
    'COPD': np.random.choice([0, 1], size=n),
    'DM': np.random.choice([0, 1], size=n),
    'ASTHMA': np.random.choice([0, 1], size=n),
    'HYPERTENSION': np.random.choice([0, 1], size=n),
    'SCHIZOPHRENIA': np.random.choice([0, 1], size=n),
    'MOOD_DEPRESSED': np.random.choice([0, 1], size=n),
    'MOOD_BIPOLAR': np.random.choice([0, 1], size=n),
    'TREATMENT': np.random.choice(['Yes', 'No'], size=n)
}

df = pd.DataFrame(data)

Parameters

df: name of dataframe

id_col: Primary key of the dataframe; accepts string or integer or float.

group_col: A Column to group by, It must be a binary column. Strings or integers are acceptable.

positive_class: This is the response value for the primary outcome of interest. For instance, positive value for a Treatment cohort is 'Yes' or 1 otherwise 'No' or 0, respectively. Strings or integers are acceptable.

continuous_var_summary: User specifies measures of central tendency, only mean and median are acceptable. This parameter is case insensitive.

Example usage of FindOutliers Class

This returns a dataframe (outliers_flag_df) with outlier_flag column (outlier_flag =1: record contains one or more ouliers). Tukey's IQR method is used to detect outliers in the data

outliers_flag=FindOutliers(df=df, id_col='MCID', group_col='TREATMENT')
outliers_flag_df=outliers_flag.flag_outliers()

This example counts number of rows with outliers stratified by a defined grouping variable

outliers_flag.count_outliers()

This example removes all outliers

df2=outliers_flag.remove_outliers()
df2.shape

Example usage of DescriptiveStats Class

descriptive_stats = DescriptiveStats(df=df, id_col='MCID', group_col='TREATMENT', positive_class='Yes', continuous_var_summary='median')

Gets statistics for binary and categorical variables and returns a dataframe.

binary_stats_df = descriptive_stats.get_binary_stats()

Gets mean and standard deviation for continuous variables and returns a dataframe.

continuous_stats_mean_df = descriptive_stats.get_continuous_mean_stats()

Gets median and interquartile range for continuous variables and returns a dataframe.

continuous_stats_median_df = descriptive_stats.get_continuous_median_stats()

Computes summary statistics for binary and continuous variables based on defined measure of central tendency. Method returns a dataframe.

descriptive_stats.compute_descriptive_stats()
summary_stats = descriptive_stats.summary_stats()

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

describr-0.0.26.tar.gz (7.3 kB view details)

Uploaded Source

Built Distribution

describr-0.0.26-py3-none-any.whl (7.1 kB view details)

Uploaded Python 3

File details

Details for the file describr-0.0.26.tar.gz.

File metadata

  • Download URL: describr-0.0.26.tar.gz
  • Upload date:
  • Size: 7.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.12.1

File hashes

Hashes for describr-0.0.26.tar.gz
Algorithm Hash digest
SHA256 c03734bab19a119d8fac3de2d3971677d2412547632c88d5c03951b1614ea954
MD5 70e64bdbc5875132f80ccfec81f70151
BLAKE2b-256 54e0c380ca543b8845943318d232574a789d99dfe78b919d09f27cdaa7ff52ba

See more details on using hashes here.

File details

Details for the file describr-0.0.26-py3-none-any.whl.

File metadata

  • Download URL: describr-0.0.26-py3-none-any.whl
  • Upload date:
  • Size: 7.1 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.12.1

File hashes

Hashes for describr-0.0.26-py3-none-any.whl
Algorithm Hash digest
SHA256 3efd7fb21a54587372db8d791c29cb1547a12e8b362e7811c9a95b60f7065ce1
MD5 0fc866a7addd97ac7befc8c8be1a2aee
BLAKE2b-256 f458e2eaa894290e92cbb1259c26bbcb0a3accc2d41b2af7ee7bc8464c14ce08

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page