Skip to main content

Describr is a Python library that provides a convenient way to generate descriptive statistics for datasets.

Project description

README.md

describr is a Python library that provides functionality for descriptive statistics and outlier detection in pandas DataFrames.

Installation

You can install describr using pip:

pip install describr

Example usage

import pandas as pd

import numpy as np

from describr import FindOutliers, DescriptiveStats

Create a sample dataframe

np.random.seed(0)

n = 500



data = {

    'MCID': ['MCID_' + str(i) for i in range(1, n + 1)],

    'Age': np.random.randint(18, 90, size=n),

    'Race': np.random.choice(['White', 'Black', 'Asian', 'Hispanic',''], size=n),

    'Educational_Status': np.random.choice(['High School', 'Bachelor', 'Master', 'PhD',''], size=n),

    'Gender': np.random.choice(['Male', 'Female', ''], size=n),

    'ER_COST': np.random.uniform(500, 5000, size=n),

    'ER_VISITS': np.random.randint(0, 10, size=n),

    'IP_COST': np.random.uniform(5000, 20000, size=n),

    'IP_ADMITS': np.random.randint(0, 5, size=n),

    'CHF': np.random.choice([0, 1], size=n),

    'COPD': np.random.choice([0, 1], size=n),

    'DM': np.random.choice([0, 1], size=n),

    'ASTHMA': np.random.choice([0, 1], size=n),

    'HYPERTENSION': np.random.choice([0, 1], size=n),

    'SCHIZOPHRENIA': np.random.choice([0, 1], size=n),

    'MOOD_DEPRESSED': np.random.choice([0, 1], size=n),

    'MOOD_BIPOLAR': np.random.choice([0, 1], size=n),

    'TREATMENT': np.random.choice(['Yes', 'No'], size=n)

}



df = pd.DataFrame(data)

Parameters

df: name of dataframe

id_col: Primary key of the dataframe; accepts string or integer or float.

group_col: A Column to group by, It must be a binary column. Strings or integers are acceptable.

positive_class: This is the response value for the primary outcome of interest. For instance, positive value for a Treatment cohort is 'Yes' or 1 otherwise 'No' or 0, respectively. Strings or integers are acceptable.

continuous_var_summary: Users specifies measures of central tendency, only mean and median are acceptable. This parameter is case insensitive.

Example usage of FindOutliers Class

This returns a dataframe (outliers_flag_df) with outlier_flag column (outlier_flag =1: record contains one or more ouliers). Tukey's IQR method is used to detect outliers in the data

outliers_flag=FindOutliers(df=df, id_col='MCID', group_col='TREATMENT')

outliers_flag_df=outliers_flag.flag_outliers()

This example counts number of rows with outliers stratified by a defined grouping variable

outliers_flag.count_outliers()

This example removes all outliers

df2=outliers_flag.remove_outliers()

df2.shape

Example usage of DescriptiveStats Class

descriptive_stats = DescriptiveStats(df=df, id_col='MCID', group_col='TREATMENT', positive_class='Yes', continuous_var_summary='median')

Get statistics for binary and categorical variables and returns a dataframe.

binary_stats_df = descriptive_stats.get_binary_stats()

Get mean and standard deviation for continuous variables and returns a dataframe.

continuous_stats_mean_df = descriptive_stats.get_continuous_mean_stats()

Get median and interquartile range for continuous variables and returns a dataframe.

continuous_stats_median_df = descriptive_stats.get_continuous_median_stats()

Compute summary statistics for binary and continuous variables based on defined measure of central tendency. Method returns a dataframe.

descriptive_stats.compute_descriptive_stats()

summary_stats = descriptive_stats.summary_stats()

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

describr-0.0.3.tar.gz (7.5 kB view details)

Uploaded Source

Built Distribution

describr-0.0.3-py3-none-any.whl (6.8 kB view details)

Uploaded Python 3

File details

Details for the file describr-0.0.3.tar.gz.

File metadata

  • Download URL: describr-0.0.3.tar.gz
  • Upload date:
  • Size: 7.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.7

File hashes

Hashes for describr-0.0.3.tar.gz
Algorithm Hash digest
SHA256 84f2d5e3caaa5622331d19034cfbce7f7d43c2bc757f5dffb2cee679741742e7
MD5 4c8280b6f60a7c8e47db95a35a97bd25
BLAKE2b-256 91902c775fb23c0d1624bd4d1e69732ed9c1359a82f8054002fb45de671c16ce

See more details on using hashes here.

File details

Details for the file describr-0.0.3-py3-none-any.whl.

File metadata

  • Download URL: describr-0.0.3-py3-none-any.whl
  • Upload date:
  • Size: 6.8 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.7

File hashes

Hashes for describr-0.0.3-py3-none-any.whl
Algorithm Hash digest
SHA256 207d3a68d92e53002c4c0f5c843a7e4c70ae90af860ef14e5ff4676e6441d5dd
MD5 d4d085fe2287a795e6318d1b2ad3d6e1
BLAKE2b-256 15c39b553e266802f522bbaa3ae6a132e8ba174ee99979fcb2d9690bc37d0442

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page