Skip to main content

Describr is a Python library that provides a convenient way to generate descriptive statistics for datasets.

Project description

README.md

describr is a Python library that provides functionality for descriptive statistics and outlier detection in pandas DataFrames.

Installation

You can install describr using pip:

pip install describr

Example usage

import pandas as pd

import numpy as np

from describr import FindOutliers, DescriptiveStats

Create a sample dataframe

np.random.seed(0)

n = 500



data = {

    'MCID': ['MCID_' + str(i) for i in range(1, n + 1)],

    'Age': np.random.randint(18, 90, size=n),

    'Race': np.random.choice(['White', 'Black', 'Asian', 'Hispanic',''], size=n),

    'Educational_Status': np.random.choice(['High School', 'Bachelor', 'Master', 'PhD',''], size=n),

    'Gender': np.random.choice(['Male', 'Female', ''], size=n),

    'ER_COST': np.random.uniform(500, 5000, size=n),

    'ER_VISITS': np.random.randint(0, 10, size=n),

    'IP_COST': np.random.uniform(5000, 20000, size=n),

    'IP_ADMITS': np.random.randint(0, 5, size=n),

    'CHF': np.random.choice([0, 1], size=n),

    'COPD': np.random.choice([0, 1], size=n),

    'DM': np.random.choice([0, 1], size=n),

    'ASTHMA': np.random.choice([0, 1], size=n),

    'HYPERTENSION': np.random.choice([0, 1], size=n),

    'SCHIZOPHRENIA': np.random.choice([0, 1], size=n),

    'MOOD_DEPRESSED': np.random.choice([0, 1], size=n),

    'MOOD_BIPOLAR': np.random.choice([0, 1], size=n),

    'TREATMENT': np.random.choice(['Yes', 'No'], size=n)

}



df = pd.DataFrame(data)

Parameters

df: name of dataframe

id_col: Primary key of the dataframe; accepts string or integer or float.

group_col: A Column to group by, It must be a binary column. Strings or integers are acceptable.

positive_class: This is the response value for the primary outcome of interest. For instance, positive value for a Treatment cohort is 'Yes' or 1 otherwise 'No' or 0, respectively. Strings or integers are acceptable.

continuous_var_summary: Users specifies measures of central tendency, only mean and median are acceptable. This parameter is case insensitive.

Example usage of FindOutliers Class

This returns a dataframe (outliers_flag_df) with outlier_flag column (outlier_flag =1: record contains one or more ouliers). Tukey's IQR method is used to detect outliers in the data

outliers_flag=FindOutliers(df=df, id_col='MCID', group_col='TREATMENT')

outliers_flag_df=outliers_flag.flag_outliers()

This example counts number of rows with outliers stratified by a defined grouping variable

outliers_flag.count_outliers()

This example removes all outliers

df2=outliers_flag.remove_outliers()

df2.shape

Example usage of DescriptiveStats Class

descriptive_stats = DescriptiveStats(df=df, id_col='MCID', group_col='TREATMENT', positive_class='Yes', continuous_var_summary='median')

Gets statistics for binary and categorical variables and returns a dataframe.

binary_stats_df = descriptive_stats.get_binary_stats()

Gets mean and standard deviation for continuous variables and returns a dataframe.

continuous_stats_mean_df = descriptive_stats.get_continuous_mean_stats()

Gets median and interquartile range for continuous variables and returns a dataframe.

continuous_stats_median_df = descriptive_stats.get_continuous_median_stats()

Computes summary statistics for binary and continuous variables based on defined measure of central tendency. Method returns a dataframe.

descriptive_stats.compute_descriptive_stats()

summary_stats = descriptive_stats.summary_stats()

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

describr-0.0.5.tar.gz (7.6 kB view details)

Uploaded Source

Built Distribution

describr-0.0.5-py3-none-any.whl (6.9 kB view details)

Uploaded Python 3

File details

Details for the file describr-0.0.5.tar.gz.

File metadata

  • Download URL: describr-0.0.5.tar.gz
  • Upload date:
  • Size: 7.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.7

File hashes

Hashes for describr-0.0.5.tar.gz
Algorithm Hash digest
SHA256 1abf2e1fae32a425b57d7ec4bfa64537162e91a441b24ca6ac1007bfbfb0e100
MD5 e17b27c933cc02a3cd5182ce1cf0299d
BLAKE2b-256 c4e7e494397ae6435e5f7754dd458f6dff0af19956472c59b447a46c200e22e5

See more details on using hashes here.

File details

Details for the file describr-0.0.5-py3-none-any.whl.

File metadata

  • Download URL: describr-0.0.5-py3-none-any.whl
  • Upload date:
  • Size: 6.9 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.7

File hashes

Hashes for describr-0.0.5-py3-none-any.whl
Algorithm Hash digest
SHA256 0c5deada873c6bcbc5d0fbe09f4e21c955eeb42a74e7cd6aaff439796fa17e14
MD5 e7db9f1bcb53598e14351abd04bc5c20
BLAKE2b-256 b11fc1ca13b14c6a22901acf3a91189eabf48ffa0bc5c62d7900deb68f76e250

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page