Skip to main content

Describr is a Python library that provides a convenient way to generate descriptive statistics for datasets.

Project description

README.md

describr is a Python library that provides functionality for descriptive statistics and outlier detection in pandas DataFrames.

Installation

You can install describr using pip:

pip install describr

Example usage

import pandas as pd

import numpy as np

from describr import FindOutliers, DescriptiveStats

Create a sample dataframe

np.random.seed(0)

n = 500



data = {

    'MCID': ['MCID_' + str(i) for i in range(1, n + 1)],

    'Age': np.random.randint(18, 90, size=n),

    'Race': np.random.choice(['White', 'Black', 'Asian', 'Hispanic',''], size=n),

    'Educational_Status': np.random.choice(['High School', 'Bachelor', 'Master', 'PhD',''], size=n),

    'Gender': np.random.choice(['Male', 'Female', ''], size=n),

    'ER_COST': np.random.uniform(500, 5000, size=n),

    'ER_VISITS': np.random.randint(0, 10, size=n),

    'IP_COST': np.random.uniform(5000, 20000, size=n),

    'IP_ADMITS': np.random.randint(0, 5, size=n),

    'CHF': np.random.choice([0, 1], size=n),

    'COPD': np.random.choice([0, 1], size=n),

    'DM': np.random.choice([0, 1], size=n),

    'ASTHMA': np.random.choice([0, 1], size=n),

    'HYPERTENSION': np.random.choice([0, 1], size=n),

    'SCHIZOPHRENIA': np.random.choice([0, 1], size=n),

    'MOOD_DEPRESSED': np.random.choice([0, 1], size=n),

    'MOOD_BIPOLAR': np.random.choice([0, 1], size=n),

    'TREATMENT': np.random.choice(['Yes', 'No'], size=n)

}



df = pd.DataFrame(data)

Parameters

df: name of dataframe

id_col: Primary key of the dataframe; accepts string or integer or float.

group_col: A Column to group by, It must be a binary column. Strings or integers are acceptable.

positive_class: This is the response value for the primary outcome of interest. For instance, positive value for a Treatment cohort is 'Yes' or 1 otherwise 'No' or 0, respectively. Strings or integers are acceptable.

continuous_var_summary: Users specifies measures of central tendency, only mean and median are acceptable. This parameter is case insensitive.

Example usage of FindOutliers Class

This returns a dataframe (outliers_flag_df) with outlier_flag column (outlier_flag =1: record contains one or more ouliers). Tukey's IQR method is used to detect outliers in the data

outliers_flag=FindOutliers(df=df, id_col='MCID', group_col='TREATMENT')

outliers_flag_df=outliers_flag.flag_outliers()

This example counts number of rows with outliers stratified by a defined grouping variable

outliers_flag.count_outliers()

This example removes all outliers

df2=outliers_flag.remove_outliers()

df2.shape

Example usage of DescriptiveStats Class

descriptive_stats = DescriptiveStats(df=df, id_col='MCID', group_col='TREATMENT', positive_class='Yes', continuous_var_summary='median')

Gets statistics for binary and categorical variables and returns a dataframe.

binary_stats_df = descriptive_stats.get_binary_stats()

Gets mean and standard deviation for continuous variables and returns a dataframe.

continuous_stats_mean_df = descriptive_stats.get_continuous_mean_stats()

Gets median and interquartile range for continuous variables and returns a dataframe.

continuous_stats_median_df = descriptive_stats.get_continuous_median_stats()

Computes summary statistics for binary and continuous variables based on defined measure of central tendency. Method returns a dataframe.

descriptive_stats.compute_descriptive_stats()

summary_stats = descriptive_stats.summary_stats()

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

describr-0.0.6.tar.gz (7.7 kB view details)

Uploaded Source

Built Distribution

describr-0.0.6-py3-none-any.whl (6.9 kB view details)

Uploaded Python 3

File details

Details for the file describr-0.0.6.tar.gz.

File metadata

  • Download URL: describr-0.0.6.tar.gz
  • Upload date:
  • Size: 7.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.7

File hashes

Hashes for describr-0.0.6.tar.gz
Algorithm Hash digest
SHA256 ac6287ef40e9a2d42a58dff86bc75a90bfeab7d4550a119beb118c3e1f0f9a9f
MD5 fce7bb3fcfd8517b8234006955522ed9
BLAKE2b-256 8e1219ee690d2ce6f7321dcc92fe33b5b37c30bc1877bf4f321e3dd0c09bdf0c

See more details on using hashes here.

File details

Details for the file describr-0.0.6-py3-none-any.whl.

File metadata

  • Download URL: describr-0.0.6-py3-none-any.whl
  • Upload date:
  • Size: 6.9 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.7

File hashes

Hashes for describr-0.0.6-py3-none-any.whl
Algorithm Hash digest
SHA256 923a6b6bfe7b3a885f55f083d9dff8f3b4abd91d76ca576a01df44962571f472
MD5 5d2789a2e88e139c5052b47526a8b8d0
BLAKE2b-256 ce5d0c33100e404936697fc5672ff5dc69c90b96c9fbc86bea6e9734666fe28e

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page