Skip to main content

Describr is a Python library that provides a convenient way to generate descriptive statistics for datasets.

Project description

README.md

describr is a Python library that provides functionality for descriptive statistics and outlier detection in pandas DataFrames.

Installation

You can install describr using pip:

pip install describr

Example usage

import pandas as pd

import numpy as np

from describr import FindOutliers, DescriptiveStats

Create a sample dataframe

np.random.seed(0)

n = 500



data = {

    'MCID': ['MCID_' + str(i) for i in range(1, n + 1)],

    'Age': np.random.randint(18, 90, size=n),

    'Race': np.random.choice(['White', 'Black', 'Asian', 'Hispanic',''], size=n),

    'Educational_Status': np.random.choice(['High School', 'Bachelor', 'Master', 'PhD',''], size=n),

    'Gender': np.random.choice(['Male', 'Female', ''], size=n),

    'ER_COST': np.random.uniform(500, 5000, size=n),

    'ER_VISITS': np.random.randint(0, 10, size=n),

    'IP_COST': np.random.uniform(5000, 20000, size=n),

    'IP_ADMITS': np.random.randint(0, 5, size=n),

    'CHF': np.random.choice([0, 1], size=n),

    'COPD': np.random.choice([0, 1], size=n),

    'DM': np.random.choice([0, 1], size=n),

    'ASTHMA': np.random.choice([0, 1], size=n),

    'HYPERTENSION': np.random.choice([0, 1], size=n),

    'SCHIZOPHRENIA': np.random.choice([0, 1], size=n),

    'MOOD_DEPRESSED': np.random.choice([0, 1], size=n),

    'MOOD_BIPOLAR': np.random.choice([0, 1], size=n),

    'TREATMENT': np.random.choice(['Yes', 'No'], size=n)

}



df = pd.DataFrame(data)

Parameters

df: name of dataframe

id_col: Primary key of the dataframe; accepts string or integer or float.

group_col: A Column to group by, It must be a binary column. Strings or integers are acceptable.

positive_class: This is the response value for the primary outcome of interest. For instance, positive value for a Treatment cohort is 'Yes' or 1 otherwise 'No' or 0, respectively. Strings or integers are acceptable.

continuous_var_summary: Users specifies measures of central tendency, only mean and median are acceptable. This parameter is case insensitive.

Example usage of FindOutliers Class

This returns a dataframe (outliers_flag_df) with outlier_flag column (outlier_flag =1: record contains one or more ouliers). Tukey's IQR method is used to detect outliers in the data

outliers_flag=FindOutliers(df=df, id_col='MCID', group_col='TREATMENT')

outliers_flag_df=outliers_flag.flag_outliers()

This example counts number of rows with outliers stratified by a defined grouping variable

outliers_flag.count_outliers()

This example removes all outliers

df2=outliers_flag.remove_outliers()

df2.shape

Example usage of DescriptiveStats Class

descriptive_stats = DescriptiveStats(df=df, id_col='MCID', group_col='TREATMENT', positive_class='Yes', continuous_var_summary='median')

Gets statistics for binary and categorical variables and returns a dataframe.

binary_stats_df = descriptive_stats.get_binary_stats()

Gets mean and standard deviation for continuous variables and returns a dataframe.

continuous_stats_mean_df = descriptive_stats.get_continuous_mean_stats()

Gets median and interquartile range for continuous variables and returns a dataframe.

continuous_stats_median_df = descriptive_stats.get_continuous_median_stats()

Computes summary statistics for binary and continuous variables based on defined measure of central tendency. Method returns a dataframe.

descriptive_stats.compute_descriptive_stats()

summary_stats = descriptive_stats.summary_stats()

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

describr-0.0.7.tar.gz (7.8 kB view details)

Uploaded Source

Built Distribution

describr-0.0.7-py3-none-any.whl (6.9 kB view details)

Uploaded Python 3

File details

Details for the file describr-0.0.7.tar.gz.

File metadata

  • Download URL: describr-0.0.7.tar.gz
  • Upload date:
  • Size: 7.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.7

File hashes

Hashes for describr-0.0.7.tar.gz
Algorithm Hash digest
SHA256 020876dd8baede228f79c62042c544c55dcf124282ac16efe25748e12207bf53
MD5 ecff406b74193340155ec61d91aac9fb
BLAKE2b-256 bda15fe430408e87ce4b0db5b99e99c085e6f082cf2bcc67b1ad812a942ab58d

See more details on using hashes here.

File details

Details for the file describr-0.0.7-py3-none-any.whl.

File metadata

  • Download URL: describr-0.0.7-py3-none-any.whl
  • Upload date:
  • Size: 6.9 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.7

File hashes

Hashes for describr-0.0.7-py3-none-any.whl
Algorithm Hash digest
SHA256 73b197107f40cda9ad73cf7683741183494b8539945d045725b8297464b6d0fe
MD5 695adf4944b85fa8afa70384bda06732
BLAKE2b-256 59805580291e55a50572190f3990b8e303a5d618bfde32f174f030302e884e45

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page