Skip to main content

Skew detection and correction in images containing text

Project description

Deskew

Note: Skew is measured in degrees. Deskewing is a process whereby skew is removed by rotating an image by the same amount as its skew but in the opposite direction. This results in a horizontally and vertically aligned image where the text runs across the page rather than at an angle.

The return angle is between -45 and 45 degrees to don't arbitrary change the image orientation.

By using the library you can set the argument angle_pm_90 to True to have an angle between -90 and 90 degrees.

Skew detection and correction in images containing text

Image with skew
Image after deskew

Cli usage

Get the skew angle:

deskew input.png

Deskew an image:

deskew --output output.png input.png

Lib usage

scikit-image:

import numpy as np
from skimage import io
from skimage.color import rgb2gray
from skimage.transform import rotate

from deskew import determine_skew

image = io.imread('input.png')
grayscale = rgb2gray(image)
angle = determine_skew(grayscale)
rotated = rotate(image, angle, resize=True) * 255
io.imsave('output.png', rotated.astype(np.uint8))

OpenCV:

import math
from typing import Tuple, Union

import cv2
import numpy as np

from deskew import determine_skew


def rotate(
        image: np.ndarray, angle: float, background: Union[int, Tuple[int, int, int]]
) -> np.ndarray:
    old_width, old_height = image.shape[:2]
    angle_radian = math.radians(angle)
    width = abs(np.sin(angle_radian) * old_height) + abs(np.cos(angle_radian) * old_width)
    height = abs(np.sin(angle_radian) * old_width) + abs(np.cos(angle_radian) * old_height)

    image_center = tuple(np.array(image.shape[1::-1]) / 2)
    rot_mat = cv2.getRotationMatrix2D(image_center, angle, 1.0)
    rot_mat[1, 2] += (width - old_width) / 2
    rot_mat[0, 2] += (height - old_height) / 2
    return cv2.warpAffine(image, rot_mat, (int(round(height)), int(round(width))), borderValue=background)

image = cv2.imread('input.png')
grayscale = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
angle = determine_skew(grayscale)
rotated = rotate(image, angle, (0, 0, 0))
cv2.imwrite('output.png', rotated)

Debug images

If you get wrong skew angle you can generate debug images, that can help you to tune the skewing detection.

If you install deskew with pip install deskew[debug_images] you can get some debug images used for the skew detection with the function determine_skew_debug_images.

To start the investigation you should first increase the num_peaks (default 20) and use the determine_skew_debug_images function.

Then you can try to tune the following arguments num_peaks, angle_pm_90, min_angle, max_angle, min_deviation and eventually sigma.

Inspired by Alyn: https://github.com/kakul/Alyn

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distribution

deskew-1.3.3-py3-none-any.whl (7.5 kB view details)

Uploaded Python 3

File details

Details for the file deskew-1.3.3-py3-none-any.whl.

File metadata

  • Download URL: deskew-1.3.3-py3-none-any.whl
  • Upload date:
  • Size: 7.5 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.8.10

File hashes

Hashes for deskew-1.3.3-py3-none-any.whl
Algorithm Hash digest
SHA256 f740a1d2f30cc473be0a21378cb21080e291026bc0a0f9cae70b46dee4d23393
MD5 b55a3d36e1fb0846f224701dcae1cc4e
BLAKE2b-256 161cad469a7325b2ffe80ace414945c193159a1c876133551a50138cff47b149

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page