Skip to main content

Skew detection and correction in images containing text

Project description

Deskew

Note: Skew is measured in degrees. Deskewing is a process whereby skew is removed by rotating an image by the same amount as its skew but in the opposite direction. This results in a horizontally and vertically aligned image where the text runs across the page rather than at an angle.

The return angle is between -45 and 45 degrees to don't arbitrary change the image orientation.

By using the library you can set the argument angle_pm_90 to True to have an angle between -90 and 90 degrees.

Skew detection and correction in images containing text

Image with skew Image after deskew
Image with skew Image after deskew

Cli usage

Get the skew angle:

deskew input.png

Deskew an image:

deskew --output output.png input.png

Lib usage

With scikit-image:

import numpy as np
from skimage import io
from skimage.color import rgb2gray
from skimage.transform import rotate

from deskew import determine_skew

image = io.imread('input.png')
grayscale = rgb2gray(image)
angle = determine_skew(grayscale)
rotated = rotate(image, angle, resize=True) * 255
io.imsave('output.png', rotated.astype(np.uint8))

With OpenCV:

import math
from typing import Tuple, Union

import cv2
import numpy as np

from deskew import determine_skew


def rotate(
        image: np.ndarray, angle: float, background: Union[int, Tuple[int, int, int]]
) -> np.ndarray:
    old_width, old_height = image.shape[:2]
    angle_radian = math.radians(angle)
    width = abs(np.sin(angle_radian) * old_height) + abs(np.cos(angle_radian) * old_width)
    height = abs(np.sin(angle_radian) * old_width) + abs(np.cos(angle_radian) * old_height)

    image_center = tuple(np.array(image.shape[1::-1]) / 2)
    rot_mat = cv2.getRotationMatrix2D(image_center, angle, 1.0)
    rot_mat[1, 2] += (width - old_width) / 2
    rot_mat[0, 2] += (height - old_height) / 2
    return cv2.warpAffine(image, rot_mat, (int(round(height)), int(round(width))), borderValue=background)

image = cv2.imread('input.png')
grayscale = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
angle = determine_skew(grayscale)
rotated = rotate(image, angle, (0, 0, 0))
cv2.imwrite('output.png', rotated)

Debug images

If you get wrong skew angle you can generate debug images, that can help you to tune the skewing detection.

If you install deskew with pip install deskew[debug_images] you can get some debug images used for the skew detection with the function determine_skew_debug_images.

To start the investigation you should first increase the num_peaks (default 20) and use the determine_skew_debug_images function.

Then you can try to tune the following arguments num_peaks, angle_pm_90, min_angle, max_angle, min_deviation and eventually sigma.

Inspired by Alyn: https://github.com/kakul/Alyn

Contributing

Install the pre-commit hooks:

pip install pre-commit
pre-commit install --allow-missing-config

Project details


Release history Release notifications | RSS feed

This version

1.4.3

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

deskew-1.4.3.tar.gz (6.9 kB view details)

Uploaded Source

Built Distribution

deskew-1.4.3-py3-none-any.whl (7.7 kB view details)

Uploaded Python 3

File details

Details for the file deskew-1.4.3.tar.gz.

File metadata

  • Download URL: deskew-1.4.3.tar.gz
  • Upload date:
  • Size: 6.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.6

File hashes

Hashes for deskew-1.4.3.tar.gz
Algorithm Hash digest
SHA256 d13ccb037835d02e5deb7fbd2a0dc5c6378ce2ad97d265fe6a64a59c891a6183
MD5 75739e9c7d3cd4c259984de7ef3803a2
BLAKE2b-256 0c53e6e83055477254cc23b928f155445deb582434d4477f22769c068e21228f

See more details on using hashes here.

File details

Details for the file deskew-1.4.3-py3-none-any.whl.

File metadata

  • Download URL: deskew-1.4.3-py3-none-any.whl
  • Upload date:
  • Size: 7.7 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.6

File hashes

Hashes for deskew-1.4.3-py3-none-any.whl
Algorithm Hash digest
SHA256 07d438b994f03b243149015a04034f43c471f4aa4cfe6c7878b5a3485fd25a5f
MD5 335ed346520877f1e924890edc0f8faa
BLAKE2b-256 6d677045fb8e32caf13ded03ea350e848de013220d948a1609ac26eae74a4b25

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page