Skip to main content

detectda - detecting features in videos using TDA

Project description

detecTDA logo


A package for detecting topological features in images.

Tailor-made to perform hypothesis testing on sequences of noisy images in catalysis.

Installation

If you have pip installed you may simply run

$ pip install detectda

Or, you may clone the git repository and then in said directory run:

$ pip install .

Alternatively, the following is still supported:

$ python3 setup.py install

Summarizing an image series

With a video (and optional polygonal region—see below), extracting statistics related to structure and shape of your noisy image could not be easier. detecTDA leverages TDA (topological data analysis) to derive such quantities, an illustration of which can be seen below.

Illustration of the detectda algorithm

Such processing is accomplished by fitting the class ImageSeries (or ImageSeriesPlus) to your data. Hypothesis testing whether or not images are generated from a vacuum region within the images is accomplished by fitting and transforming VacuumSeries objects. Note that hypothesis testing is only currently supported for the ImageSeries class.

Usage

detectda is a Python package for detection and hypothesis testing of noisy greyscale images and videos using TDA.

To use the identify_polygon script, run the script in the command line (after having installed the package). Then follow these steps:

1. Enter the name of your .tif video (such as test_video.tif). 

2. Then right-click to select the boundaries of your polygon. 
   Double-click to connect the polygon together and press any key 
   (such as "space" or "enter") to exit and save. 

3. Then you will name a .pkl file (you do not need to add the .pkl at the end) 
   corresponding to your video (such as test_video.pkl). 

4. Finally, the file test_video.pkl (or whatever you have called it) contains the cropped video 
   (according to the boundaries of your polygon) as well as the polygonal region of interest. 

You will then be able to use this data to process your video with the persistent entropy or ALPS statistic—see "detectda demo.ipynb".

Documentation

Additional documentation and usage examples can see at detectda.readthedocs.io.

Test video

I would like to thank the Crozier Research Group for providing "test_video.tif". Please see the accompanying paper: "Feature detection and hypothesis testing for extremely noisy nanoparticle images using topological data analysis" (2023) by Thomas, Crozier, Xu, and Matteson for information on how the video was collected.

License

detectda was created by Andrew M. Thomas. It is licensed under the terms of the MIT license.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

detectda-0.5.3.tar.gz (45.1 MB view details)

Uploaded Source

Built Distribution

detectda-0.5.3-py3-none-any.whl (45.4 MB view details)

Uploaded Python 3

File details

Details for the file detectda-0.5.3.tar.gz.

File metadata

  • Download URL: detectda-0.5.3.tar.gz
  • Upload date:
  • Size: 45.1 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.8.4

File hashes

Hashes for detectda-0.5.3.tar.gz
Algorithm Hash digest
SHA256 22a8e7ab27e45c8c217351735879fd3db3d5dfc884d6211273d89ff09da17d9f
MD5 db3f92a5ac4e85b9b566a99766423d55
BLAKE2b-256 413d36280773bc0357b4187eeb0f7f95427087d9a09d71b125e77593fccb8495

See more details on using hashes here.

File details

Details for the file detectda-0.5.3-py3-none-any.whl.

File metadata

  • Download URL: detectda-0.5.3-py3-none-any.whl
  • Upload date:
  • Size: 45.4 MB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.8.4

File hashes

Hashes for detectda-0.5.3-py3-none-any.whl
Algorithm Hash digest
SHA256 768f37b8284c32064dd23f8bbea1900a55f7d85430a82fdccb39651b26b03ca2
MD5 982c3c665aba38e93271530666e22e67
BLAKE2b-256 1eb31c3153d321599d813476aa32efc598a5231e831f963f15d1cd453ca40ccf

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page