Skip to main content

No project description provided

Project description

🔍 Detect PII

Detect PII is a library inspired by piicatcher and CommonRegex to detect columns in tables that may potentially contain PII. It does so by performing regex matches on column names and column values, flagging the ones that may contain PII.

Usage

Scan tables for PII

from detectpii.catalog import PostgresCatalog
from detectpii.pipeline import PiiDetectionPipeline
from detectpii.scanner import DataScanner, MetadataScanner
from detectpii.util import print_columns

# -- Create a catalog to connect to a database / warehouse
pg_catalog = PostgresCatalog(
    host="localhost",
    user="postgres",
    password="my-secret-pw",
    database="postgres",
    port=5432,
    schema="public"
)

# -- Create a pipeline to detect PII in the tables
pipeline = PiiDetectionPipeline(
    catalog=pg_catalog,
    scanners=[
        MetadataScanner(),
        DataScanner(percentage=20, times=2,),
    ]
)

# -- Scan for PII columns.
pii_columns = pipeline.scan()

# -- Print them to the console
print_columns(pii_columns)

Persist the pipeline

import json
from detectpii.pipeline import pipeline_to_dict

# -- Create a pipeline
pipeline = ...

# -- Convert it into a dictionary
dictionary = pipeline_to_dict(pipeline)

# -- Print it
print(json.dumps(dictionary, indent=4))

# {
#     "catalog": {
#         "tables": [],
#         "resolver": {
#             "name": "PlaintextResolver",
#             "_type": "PlaintextResolver"
#         },
#         "user": "postgres",
#         "password": "my-secret-pw",
#         "host": "localhost",
#         "port": 5432,
#         "database": "postgres",
#         "schema": "public",
#         "_type": "PostgresCatalog"
#     },
#     "scanners": [
#         {
#             "_type": "MetadataScanner"
#         },
#         {
#             "times": 2,
#             "percentage": 20,
#             "_type": "DataScanner"
#         }
#     ]
# }

Load the pipeline

from detectpii.pipeline import dict_to_pipeline

# -- Load the persisted pipeline as a dictionary
dictionary: dict = ...

# -- Convert it back to a pipeline object
pipeline = dict_to_pipeline(dictionary=dictionary)

For more detailed documentation, please see the docs folder.

Supported databases / warehouses

  • Postgres
  • Snowflake
  • Trino
  • Yugabyte

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

detectpii-0.1.0.tar.gz (14.6 kB view hashes)

Uploaded Source

Built Distribution

detectpii-0.1.0-py3-none-any.whl (20.4 kB view hashes)

Uploaded Python 3

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page