Skip to main content

Object Detection Metric in Computer Vision

Project description

Xu Jing

Introduction

The motivation of this project is the lack of consensus used by different works and implementations concerning the evaluation metrics of the object detection problem. Although on-line competitions use their own metrics to evaluate the task of object detection, just some of them offer reference code snippets to calculate the accuracy of the detected objects.

Researchers who want to evaluate their work using different datasets than those offered by the competitions, need to implement their own version of the metrics. Sometimes a wrong or different implementation can create different and biased results. Ideally, in order to have trustworthy benchmarking among different approaches, it is necessary to have a flexible implementation that can be used by everyone regardless the dataset used.

This project provides easy-to-use functions implementing the same metrics used by the the most popular competitions of object detection. Our implementation does not require modifications of your detection model to complicated input formats, avoiding conversions to XML or JSON files. We simplified the input data (ground truth bounding boxes and detected bounding boxes) and gathered in a single project the main metrics used by the academia and challenges. Our implementation was carefully compared against the official implementations and our results are exactly the same.

In the topics below you can find an overview of the most popular metrics used in different competitions and works, as well as samples showing how to use our code.

This package support:

  • PASCAL VOC Challenge metric (P-R Curve, mAP)

  • COCO Detection Challenge (P-R Curve, AP)

  • Precision

  • Recall

  • F-Score

  • Confidence Interval and Variance

More detials can find in demo.

Demo

#---------------------test detcivar module-----------------------
from detcivar import DetStatic

precision = [0.1, 0.2, 0.3, 0.4, 0.5]


# test mean
p_mean = DetStatic().mu(precision)
print(p_mean)

real_mean = sum(precision) / len(precision)
print(real_mean)


# test variance

p_var = DetStatic().variance(precision)
print(p_var)

real_var = float((0.1-real_mean)**2 + (0.2-real_mean)**2  + (0.3-real_mean)**2  + (0.4-real_mean)**2  + (0.5-real_mean)**2) / (len(precision)-1)
print(real_var)

# test confidence

ci = DetStatic().detcivar(precision,level=0.95)

import pprint
pprint.pprint(ci)


# real
# N(0,1) 0.025 quntile like equel -1.9599639845400545
import numpy as np
lower = 0.3 - np.sqrt(0.025) / np.sqrt(5) * 1.9599639845400545
upper = 0.3 + np.sqrt(0.025) / np.sqrt(5) * 1.9599639845400545

print(lower)
print(upper)


# test done!!!

# 0.3
# 0.3
# 0.025
# 0.025
# {'CI': [0.16141, 0.43859], 'Var': 0.025}
# 0.16140961756503217
# 0.43859038243496784
#----------------test detmet module-------------------------------

from detmet import *
from utils import *
from BoundingBox import BoundingBox
from BoundingBoxes import BoundingBoxes

import glob
import os

def getBoundingBoxes():
    """
    Read txt files containing bounding boxes (ground truth and detections).
    """
    # allBoundingBoxes = BoundingBoxes()

    # --------------------------Read ground truths-----------------------------
    folderGT = './groundtruths'

    files = os.listdir(folderGT)
    # files = glob.glob("./groundtruths/*.txt")
    files.sort()

    # Class representing bounding boxes (ground truths and detections)
    allBoundingBoxes = BoundingBoxes()
    # Read GT detections from txt file
    # Each line of the files in the groundtruths folder represents a ground truth bounding box
    # (bounding boxes that a detector should detect)

    # Each value of each line is  "class_id, x, y, width, height" respectively
    # Class_id represents the class of the bounding box
    # x, y represents the most top-left coordinates of the bounding box
    # x2, y2 represents the most bottom-right coordinates of the bounding box

    for f in files:   # file in GT-folder
        nameOfImage = f.replace(".txt", "")
        fh1 = open(os.path.join(folderGT,f), "r")
        for line in fh1:
            line = line.replace("\n", "")
            if line.replace(' ', '') == '':
                continue
            splitLine = line.split(" ")  # space to sep line

            idClass = splitLine[0]  # class
            x = float(splitLine[1])  # GT no confidnce
            y = float(splitLine[2])
            w = float(splitLine[3])
            h = float(splitLine[4])

            bb = BoundingBox(
                nameOfImage,
                idClass,
                x,
                y,
                w,
                h,
                CoordinatesType.Absolute, None,
                BBType.GroundTruth,
                format=BBFormat.XYWH)
            allBoundingBoxes.addBoundingBox(bb)
        fh1.close()

    # ----------------------------Read detections------------------------------
    folderDet = './detections'
    files = os.listdir(folderDet)
    # files = glob.glob("./detections/*.txt")
    files.sort()
    # Read detections from txt file
    # Each line of the files in the detections folder represents a detected bounding box.

    # Each value of each line is  "class_id, confidence, x, y, width, height" respectively
    # Class_id represents the class of the detected bounding box
    # Confidence represents confidence (from 0 to 1) that this detection belongs to the class_id.
    # x, y represents the most top-left coordinates of the bounding box
    # x2, y2 represents the most bottom-right coordinates of the bounding box

    for f in files:
        # nameOfImage = f.replace("_det.txt","")
        nameOfImage = f.replace(".txt", "")
        # Read detections from txt file
        fh1 = open(os.path.join(folderDet,f), "r")
        for line in fh1:
            line = line.replace("\n", "")
            if line.replace(' ', '') == '':
                continue
            splitLine = line.split(" ")
            idClass = splitLine[0]  # class
            confidence = float(splitLine[1])  # confidence predict detect
            x = float(splitLine[2])
            y = float(splitLine[3])
            w = float(splitLine[4])
            h = float(splitLine[5])
            bb = BoundingBox(
                nameOfImage,
                idClass,
                x,
                y,
                w,
                h,
                CoordinatesType.Absolute, None,
                BBType.Detected,  # GT or predict
                confidence,
                format=BBFormat.XYWH)
            allBoundingBoxes.addBoundingBox(bb)
        fh1.close()
    return allBoundingBoxes


def createImages(dictGroundTruth, dictDetected):
    """
    Create representative images with bounding boxes.
    """
    import numpy as np
    import cv2
    # Define image size
    width = 200
    height = 200
    # Loop through the dictionary with ground truth detections
    for key in dictGroundTruth:
        image = np.zeros((height, width, 3), np.uint8)
        gt_boundingboxes = dictGroundTruth[key]
        image = gt_boundingboxes.drawAllBoundingBoxes(image)
        detection_boundingboxes = dictDetected[key]
        image = detection_boundingboxes.drawAllBoundingBoxes(image)
        # Show detection and its GT
        cv2.imshow(key, image)
        cv2.waitKey()




# Read txt files containing bounding boxes (ground truth and detections)
boundingboxes = getBoundingBoxes()
# Uncomment the line below to generate images based on the bounding boxes
# createImages(dictGroundTruth, dictDetected)
# Create an evaluator object in order to obtain the metrics
evaluator = DetMetric()


##############################################################
# VOC PASCAL Metrics
##############################################################
# Plot Precision x Recall curve
evaluator.PlotPRCurve(
    boundingboxes,  # Object containing all bounding boxes (ground truths and detections)
    IOUThreshold=0.3,  # IOU threshold
    # MethodAveragePrecision.COCOInterpolation: COCO AP, MethodAveragePrecision.ElevenInterpolationElevenPointInterpolation: VOC2008,
    # MethodAveragePrecision.EveryPointInterpolation: VOC2010
    method=MethodAveragePrecision.COCOInterpolation,
    showAP=True,  # Show Average Precision in the title of the plot
    savePath="P-R-Curve-VOC.png",
    showInterpolatedPrecision=False)  # Plot the interpolated precision curve


# Get metrics with PASCAL VOC metrics
metricsPerClass,metricsAll = evaluator.GetDetMetrics(
    boundingboxes,  # Object containing all bounding boxes (ground truths and detections)
    IOUThreshold=0.3,  # IOU threshold
    beta = 1,  # F1-score
    method=MethodAveragePrecision.ElevenPointInterpolation)

print("Average precision values per class:\n")
# Loop through classes to obtain their metrics

s = ('%20s' + '%14s' * 6) % ('Class','P', 'R', 'F-Score',  'total TP', 'total FP','VOC AP@.5')
print(s)
for mc in metricsPerClass:
    # Get metric values per each class
    c = mc['class']
    precision = mc['precision']
    recall = mc['recall']
    f_score = mc['f_score']
    average_precision = mc['AP']
    tp = mc['total TP']
    fp = mc['total FP']

    metric_c = ('%20s' + '%14s' * 6) % (c, round(precision[-1],3), round(recall[-1],3), round(f_score,3),  tp, fp, round(average_precision,3))

    # Print AP per class
    print(metric_c)

all_precision = round(metricsAll["all_precision"],3)
all_recall = round(metricsAll["all_recall"],3)
all_f_score = round(metricsAll["all_f_score"],3)
all_ap = round(metricsAll["total_map"],3)

metric_all = ('%20s' + '%14s' * 6) % ("all", all_precision, all_recall, all_f_score,  "\\", "\\", "mAP@50:{}".format(all_ap))

# Print voc mAP for all class
print(metric_all)

#########################################################################
# COCO Metrics
# Precision, Recall, F-Score are same to VOC, so we only compute COCO AP
#########################################################################
# Plot Precision x Recall curve
evaluator.PlotPRCurve(
    boundingboxes,  # Object containing all bounding boxes (ground truths and detections)
    IOUThreshold=0.5,  # IOU threshold
    # MethodAveragePrecision.COCOInterpolation: COCO AP, MethodAveragePrecision.COCOInterpolationElevenPointInterpolation: VOC2008,
    # MethodAveragePrecision.EveryPointInterpolation: VOC2010
    method=MethodAveragePrecision.ElevenPointInterpolation, # we do not compute the COCO AP for every class, so we use VOC AP replace,in P-R Curve!
    showAP=True,  # Show Average Precision in the title of the plot
    savePath="P-R-Curv-COCO.png",
    showInterpolatedPrecision=False)  # Plot the interpolated precision curve


# Get metrics with COCO metrics

coco_ap_dict = {}
for viou in np.linspace(0.5, 0.95, num=10):

    metricsPerClass, metricsAll = evaluator.GetDetMetrics(
        boundingboxes,      # Object containing all bounding boxes (ground truths and detections)
        IOUThreshold=viou,  # IOU threshold
        beta = 1,           # F1-score
        method=MethodAveragePrecision.COCOInterpolation)

    ap_iou = metricsAll["total_map"]

    coco_ap_dict[str(viou)] = ap_iou
    print(" Average Precision  (AP)  AP@{}: {}".format(int(viou*100), round(ap_iou,3)))



COCO_AP = np.mean(np.array(list(coco_ap_dict.values())))
print(" Average Precision  (AP)  AP@50:95: {}".format(COCO_AP))

Supports

Tested on Python 3.x

TODO

Heatmap of object detectiom. like

https://github.com/argusswift/YOLOv4-pytorch/blob/master/data/heatmap.jpg?raw=true

Reference

Thanks to the open source community, we refer to many open source projects for the implementation of part of our code !

  1. https://github.com/rafaelpadilla/Object-Detection-Metrics

  2. https://github.com/WongKinYiu/PyTorch_YOLOv4

  3. https://github.com/argusswift/YOLOv4-pytorch

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

detmetric-0.2.0.tar.gz (346.5 kB view details)

Uploaded Source

File details

Details for the file detmetric-0.2.0.tar.gz.

File metadata

  • Download URL: detmetric-0.2.0.tar.gz
  • Upload date:
  • Size: 346.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: Python-urllib/3.6

File hashes

Hashes for detmetric-0.2.0.tar.gz
Algorithm Hash digest
SHA256 c16b0847b1c5db4a51ebe7904a9c609b8ecd7ff6ec67c92cc8890905feab5da3
MD5 f784b31cc145ddfc6c35213c658ac5dd
BLAKE2b-256 d77571ab99c3187f2aeff817ef9bc8ee2232178f6fbced1fe98ac8b6aed7e855

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page