Skip to main content

Binary delta encoding tools.

Project description

nala

About

Binary delta encoding in Python 3.6+ and C.

Based on http://www.daemonology.net/bsdiff/ and HDiffPatch, with the following features:

  • bsdiff, hdiffpatch and match-blocks algorithms.

  • sequential, hdiffpatch or in-place (resumable) patch types.

  • BZ2, LZ4, LZMA, Zstandard, heatshrink or CRLE compression.

  • Sequential patches allow streaming.

  • Maximum file size is 2 GB for the bsdiff algorithm. There is practically no limit for the hdiffpatch and match-blocks algorithms.

  • Incremental apply patch implemented in C, suitable for memory constrained embedded devices. Only the sequential patch type is supported.

  • SA-IS or divsufsort instead of qsufsort for bsdiff.

  • Optional experimental data format aware algorithm for potentially smaller patches. I don’t recommend anyone to use this functionality as the gain is small in relation to memory usage and code complexity!

    There is a risk this functionality uses patent https://patents.google.com/patent/EP1988455B1/en. Anyway, this patent expires in August 2019 as I understand it.

    Supported data formats:

    • ARM Cortex-M4

    • AArch64

Project homepage: https://github.com/eerimoq/detools

Documentation: http://detools.readthedocs.org/en/latest

Installation

pip install detools

Statistics

Patch sizes, memory usage (RSS) and elapsed times when creating a patch from Python-3.7.3.tar (79M) to Python-3.8.1.tar (84M) for various algorithm, patch type and compression combinations.

See tests/benchmark.sh for details on how the data was collected.

Algorithm

Patch type

Compr.

Patch size

RSS

Time

bsdiff

sequential

lzma

3,5M

662M

0:24.29

bsdiff

sequential

none

86M

646M

0:15.20

hdiffpatch

hdiffpatch

lzma

2,4M

523M

0:13.74

hdiffpatch

hdiffpatch

none

7,2M

523M

0:10.24

match-blocks

sequential

lzma

2,9M

273M

0:08.57

match-blocks

sequential

none

84M

273M

0:01.72

match-blocks

hdiffpatch

lzma

2,6M

212M

0:06.07

match-blocks

hdiffpatch

none

9,7M

212M

0:01.30

Same as above, but for MicroPython ESP8266 binary releases (from 604k to 615k).

Algorithm

Patch type

Compr.

Patch size

RSS

Time

bsdiff

sequential

lzma

71K

46M

0:00.64

bsdiff

sequential

none

609K

27M

0:00.33

hdiffpatch

hdiffpatch

lzma

65K

42M

0:00.37

hdiffpatch

hdiffpatch

none

123K

25M

0:00.32

match-blocks

sequential

lzma

194K

46M

0:00.44

match-blocks

sequential

none

606K

25M

0:00.22

match-blocks

hdiffpatch

lzma

189K

43M

0:00.38

match-blocks

hdiffpatch

none

313K

24M

0:00.19

Example usage

Examples in C are found in c.

Command line tool

The create patch subcommand

Create a patch foo.patch from tests/files/foo/old to tests/files/foo/new.

$ detools create_patch tests/files/foo/old tests/files/foo/new foo.patch
Successfully created 'foo.patch' in 0.01 seconds!
$ ls -l foo.patch
-rw-rw-r-- 1 erik erik 127 feb  2 10:35 foo.patch

Create the same patch as above, but without compression.

$ detools create_patch --compression none \
      tests/files/foo/old tests/files/foo/new foo-no-compression.patch
Successfully created 'foo-no-compression.patch' in 0 seconds!
$ ls -l foo-no-compression.patch
-rw-rw-r-- 1 erik erik 2792 feb  2 10:35 foo-no-compression.patch

Create a hdiffpatch patch foo-hdiffpatch.patch.

$ detools create_patch --algorithm hdiffpatch --patch-type hdiffpatch \
      tests/files/foo/old tests/files/foo/new foo-hdiffpatch.patch
Successfully created patch 'foo-hdiffpatch.patch' in 0.01 seconds!
$ ls -l foo-hdiffpatch.patch
-rw-rw-r-- 1 erik erik 146 feb  2 10:37 foo-hdiffpatch.patch

Lower memory usage with --algorithm match-blocks algorithm. Mainly useful for big files. Creates slightly bigger patches than bsdiff and hdiffpatch.

$ detools create_patch --algorithm match-blocks \
      tests/files/foo/old tests/files/foo/new foo-hdiffpatch-64.patch
Successfully created patch 'foo-hdiffpatch-64.patch' in 0.01 seconds!
$ ls -l foo-hdiffpatch-64.patch
-rw-rw-r-- 1 erik erik 404 feb  8 11:03 foo-hdiffpatch-64.patch

Non-sequential but smaller patch with --patch-type hdiffpatch.

$ detools create_patch \
      --algorithm match-blocks --patch-type hdiffpatch \
      tests/files/foo/old tests/files/foo/new foo-hdiffpatch-sequential.patch
Successfully created 'foo-hdiffpatch-sequential.patch' in 0.01 seconds!
$ ls -l foo-hdiffpatch-sequential.patch
-rw-rw-r-- 1 erik erik 389 feb  8 11:05 foo-hdiffpatch-sequential.patch

The create in-place patch subcommand

Create an in-place patch foo-in-place.patch.

$ detools create_patch_in_place --memory-size 3000 --segment-size 500 \
      tests/files/foo/old tests/files/foo/new foo-in-place.patch
Successfully created 'foo-in-place.patch' in 0.01 seconds!
$ ls -l foo-in-place.patch
-rw-rw-r-- 1 erik erik 672 feb  2 10:36 foo-in-place.patch

The create bsdiff patch subcommand

Create a bsdiff patch foo-bsdiff.patch, compatible with the original bsdiff program.

$ detools create_patch_bsdiff \
      tests/files/foo/old tests/files/foo/new foo-bsdiff.patch
Successfully created 'foo-bsdiff.patch' in 0 seconds!
$ ls -l foo-bsdiff.patch
-rw-rw-r-- 1 erik erik 261 feb  2 10:36 foo-bsdiff.patch

The apply patch subcommand

Apply the patch foo.patch to tests/files/foo/old to create foo.new.

$ detools apply_patch tests/files/foo/old foo.patch foo.new
Successfully created 'foo.new' in 0 seconds!
$ ls -l foo.new
-rw-rw-r-- 1 erik erik 2780 feb  2 10:38 foo.new

The in-place apply patch subcommand

Apply the in-place patch foo-in-place.patch to foo.mem.

$ cp tests/files/foo/in-place-3000-500.mem foo.mem
$ detools apply_patch_in_place foo.mem foo-in-place.patch
Successfully created 'foo.mem' in 0 seconds!
$ ls -l foo.mem
-rw-rw-r-- 1 erik erik 3000 feb  2 10:40 foo.mem

The bsdiff apply patch subcommand

Apply the patch foo-bsdiff.patch to tests/files/foo/old to create foo.new.

$ detools apply_patch_bsdiff tests/files/foo/old foo-bsdiff.patch foo.new
Successfully created 'foo.new' in 0 seconds!
$ ls -l foo.new
-rw-rw-r-- 1 erik erik 2780 feb  2 10:41 foo.new

The patch info subcommand

Print information about the patch foo.patch.

$ detools patch_info foo.patch
Type:               sequential
Patch size:         127 bytes
To size:            2.71 KiB
Patch/to ratio:     4.6 % (lower is better)
Diff/extra ratio:   9828.6 % (higher is better)
Size/data ratio:    0.3 % (lower is better)
Compression:        lzma

Number of diffs:    2
Total diff size:    2.69 KiB
Average diff size:  1.34 KiB
Median diff size:   1.34 KiB

Number of extras:   2
Total extra size:   28 bytes
Average extra size: 14 bytes
Median extra size:  14 bytes

Contributing

  1. Fork the repository.

  2. Install prerequisites.

    pip install -r requirements.txt
  3. Implement the new feature or bug fix.

  4. Implement test case(s) to ensure that future changes do not break legacy.

  5. Run the tests.

    make test
  6. Create a pull request.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

detools-0.53.0.tar.gz (11.1 MB view details)

Uploaded Source

File details

Details for the file detools-0.53.0.tar.gz.

File metadata

  • Download URL: detools-0.53.0.tar.gz
  • Upload date:
  • Size: 11.1 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.16

File hashes

Hashes for detools-0.53.0.tar.gz
Algorithm Hash digest
SHA256 95b5bdeaaaf76e73ca4c8015f2d7c0cc98fbe91f5119b0a97faeb991315241db
MD5 4230a386ac69ebcaa3e33d1dc1bf8ade
BLAKE2b-256 ef4cbb789ed55b5266cb02101d6efe52ea48e9fc4a0900690868f297153e3db2

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page