Skip to main content

data eval in future

Project description

518.is

The deva lib makes it easy to write streaming data process pipelines,event driven programing,and run async function.

An example of a streaming process and web view

streanming
# coding: utf-8
from deva.page import page, render_template
from deva import *

# 系统日志监控
s = from_textfile('/var/log/system.log')
s1 = s.sliding_window(5).map(concat('<br>'), name='system.log日志监控')
s.start()


# 实时股票数据

s2 = timer(func=lambda: NB('sample')['df'].sample(
    5).to_html(), start=True, name='实时股票数据', interval=1)

# 系统命令执行
command_s = Stream.from_process(['ping','baidu.com'])
s3 = command_s.sliding_window(5).map(concat('<br>'), name='系统持续命令')
command_s.start()


s1.webview()
s2.webview()
s3.webview()

Monitor().start()
Deva.run()

Features

License

Copyright spark, 2018-2020.

Install

pip install deva

or

pip3 install deva

Sample

<b>如果是在jupyter里执行带码,代码尾部不需要添加Deva.run() </b>

bus

<b>如果使用bus跨进程,需要安装redis 5.0</b>

from deva import *

# 每隔一秒写入秒数到bus中
timer(start=True) >> bus
# 打印来自bus到数据
bus >> log
Deva.run()
from deva import *

# bus中的证书进行乘2后打印日志
bus.filter(lambda x: isinstance(x, int)).map(lambda x: x*2) >> log
# bus中来的原始数据全部打印报警
bus >> warn

Deva.run()

Crawler

from deva import *

h = http()
h.map(lambda r: (r.url, r.html.search('<title>{}</title>')[0])) >> log
'http://www.518.is' >> h


s = Stream()
s.rate_limit(1).http(workers=20).map(lambda r: (
    r.url, r.html.search('<title>{}</title>')[0])) >> warn
'http://www.518.is' >> s

Deva.run()

timer

from deva import timer, log, Deva, warn

# 默认每秒执行一次,返回当前秒
timer(start=True) >> log

# 3秒返回一个yahoo,随后启动,结果报警warn
s = timer(func=lambda: 'yahoo', interval=3)
s.start()

s >> warn
# 可用stop方法停止一个定时器
# s.stop()
Deva.run()


# python3 每隔n秒执行.py
# [2020-03-14 10:31:16.847544] INFO: log: 16
# WARNING:root:yahoo
# [2020-03-14 10:31:17.849576] INFO: log: 17
# [2020-03-14 10:31:18.853488] INFO: log: 18
# WARNING:root:yahoo
# [2020-03-14 10:31:19.855116] INFO: log: 19
# [2020-03-14 10:31:20.859602] INFO: log: 20
# [2020-03-14 10:31:21.865973] INFO: log: 21
# WARNING:root:yahoo
# [2020-03-14 10:31:22.868624] INFO: log: 22

scheduler

from deva import *

s = Stream.scheduler()

# 5秒执行一次的任务,返回yahoo到s中

s.add_job(func=lambda: 'yahoo', seconds=5)
# 5秒执行一次的任务,发送yamaha到bus,且返回yamaha到s中

s.add_job(func=lambda: 'yamaha' >> bus, seconds=5)

# 返回open到s中,每天执行一次,启动时间9点25
s.add_job(name='open', func=lambda: 'open', days=1, start_date='2019-04-03 09:25:00')

# 发送关闭到bus,返回值close放到s中,每天执行一次,15点30开始执行


def foo():
    '关闭' >> bus
    return 'close'


s.add_job(name='close', func=foo,
          days=1, start_date='2019-04-03 15:30:00')

# 打印所有任务
s.get_jobs() | pmap(lambda x: x.next_run_time) | ls | print

# 放入s中的所有数据都打印日志
s >> log

bus.map(lambda x: x*2) >> warn

Deva.run()


# $ python3 time_scheduler/scheduler.py

# [datetime.datetime(2020, 3, 14, 18, 6, 17, 830399, tzinfo=<DstTzInfo 'Asia/Shanghai' CST+8:00:00 STD>), datetime.datetime(2020, 3, 14, 18, 6, 17, 830947, tzinfo=<DstTzInfo 'Asia/Shanghai' CST+8:00:00 STD>), datetime.datetime(2020, 3, 15, 9, 25, tzinfo=<DstTzInfo 'Asia/Shanghai' CST+8:00:00 STD>), datetime.datetime(2020, 3, 15, 15, 30, tzinfo=<DstTzInfo 'Asia/Shanghai' CST+8:00:00 STD>)]
# [2020-03-14 10:06:17.835725] INFO: log: yahoo
# [2020-03-14 10:06:17.839594] INFO: log: yamaha
# WARNING:root:yamahayamaha
# [2020-03-14 10:06:22.846482] INFO: log: yahoo
# [2020-03-14 10:06:22.851722] INFO: log: yamaha
# WARNING:root:yamahayamaha
# [2020-03-14 10:06:27.840823] INFO: log: yaho

workers

from deva import bus, log, when, Deva

# 开盘任务
@bus.route(lambda x: x == 'open')
def onopen(x):
    'open' >> log

# 收盘任务
@bus.route(lambda x: x == 'close')
def onclose(x):
    'close' >> log

# 另外一种写法

when('open', source=bus).then(lambda: print(f'开盘啦'))
Deva.run()

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

deva-1.2.0.tar.gz (139.2 kB view hashes)

Uploaded Source

Built Distribution

deva-1.2.0-py3-none-any.whl (179.9 kB view hashes)

Uploaded Python 3

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page