Skip to main content

Accelerate data driven research in developmental biology with deep learning models

Project description

Build Status Open In Colab

Contents

Installation

pip install devolearn

Example notebooks

Segmenting the C. elegans embryo

  • Importing the model
from devolearn import embryo_segmentor
segmentor = embryo_segmentor()
  • Running the model on an image and viewing the prediction
seg_pred = segmentor.predict(image_path = "sample_data/images/seg_sample.jpg")
plt.imshow(seg_pred)
plt.show()
  • Running the model on a video and saving the predictions into a folder
filenames = segmentor.predict_from_video(video_path = "sample_data/videos/seg_sample.mov", centroid_mode = False, save_folder = "preds")
  • Finding the centroids of the segmented features
seg_pred, centroids = segmentor.predict(image_path = "sample_data/images/seg_sample.jpg", centroid_mode = True)
plt.imshow(seg_pred)
plt.show()
  • Saving the centroids from each frame into a CSV
df = segmentor.predict_from_video(video_path = "sample_data/videos/seg_sample.mov", centroid_mode = True, save_folder = "preds")
df.to_csv("centroids.csv")

Generating synthetic images of embryos with a Pre-trained GAN

  • Importing the model
from devolearn import Generator, embryo_generator_model
generator = embryo_generator_model()
  • Generating a picture and viewing it with matplotlib
gen_image = generator.generate()  
plt.imshow(gen_image)
plt.show()
  • Generating n images and saving them into foldername with a custom size
generator.generate_n_images(n = 5, foldername= "generated_images", image_size= (700,500))

Predicting populations of cells within the C. elegans embryo

  • Importing the population model for inferences
from devolearn import lineage_population_model
  • Loading a model instance to be used to estimate lineage populations of embryos from videos/photos.
model = lineage_population_model(mode = "cpu")
  • Making a prediction from an image
print(model.predict(image_path = "sample_data/images/embryo_sample.png"))
  • Making predictions from a video and saving the predictions into a CSV file
results = model.predict_from_video(video_path = "sample_data/videos/embryo_timelapse.mov", save_csv = True, csv_name = "video_preds.csv", ignore_first_n_frames= 10, ignore_last_n_frames= 10 )
  • Plotting the model's predictions from a video
plot = model.create_population_plot_from_video(video_path = "sample_data/videos/embryo_timelapse.mov", save_plot= True, plot_name= "plot.png", ignore_last_n_frames= 0 )
plot.show()

Links to Datasets

Model Data source
Segmenting the C. elegans embryo 3DMMS: robust 3D Membrane Morphological Segmentation of C. elegans embryo
Cell lineage population prediction + embryo GAN EPIC dataset

Authors/maintainers:

Feel free to join our Slack workspace!

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

devolearn-0.3.0.tar.gz (1.9 MB view details)

Uploaded Source

Built Distribution

devolearn-0.3.0-py3-none-any.whl (1.9 MB view details)

Uploaded Python 3

File details

Details for the file devolearn-0.3.0.tar.gz.

File metadata

  • Download URL: devolearn-0.3.0.tar.gz
  • Upload date:
  • Size: 1.9 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/53.0.0 requests-toolbelt/0.9.1 tqdm/4.56.0 CPython/3.8.5

File hashes

Hashes for devolearn-0.3.0.tar.gz
Algorithm Hash digest
SHA256 c41bd25f208cf1e0b3f6ea896dcc03cfc251b866c1fc6003ae884e434c308d28
MD5 0a869eeb5dbc32fb3a4e76524c6f562d
BLAKE2b-256 47ced07bb787ad37ea1ac301c4ec88c649a0cf3ddf0d8acfd6266c8ba76841aa

See more details on using hashes here.

File details

Details for the file devolearn-0.3.0-py3-none-any.whl.

File metadata

  • Download URL: devolearn-0.3.0-py3-none-any.whl
  • Upload date:
  • Size: 1.9 MB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/53.0.0 requests-toolbelt/0.9.1 tqdm/4.56.0 CPython/3.8.5

File hashes

Hashes for devolearn-0.3.0-py3-none-any.whl
Algorithm Hash digest
SHA256 c62c1382071cb61c84cae1806ecb0843704e8348cf7c6b2eefa1e149defc4efd
MD5 c529783fe98e3bc2ba0e62f481a12a2e
BLAKE2b-256 cb35ef245a00a00632ea0a2e6c4c58e863755d4681497ce5dff0209241297f52

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page