Skip to main content

Accelerate data driven research on embryos with Pre-Trained deep learning models

Project description

Contents

Segmenting the C. elegans embryo

  • Importing the model
from devolearn import embryo_segmentor
segmentor = embryo_segmentor()
  • Running the model on an image and viewing the prediction
seg_pred = segmentor.predict(image_path = "sample_data/images/seg_sample.jpg")
plt.imshow(seg_pred)
plt.show()
  • Running the model on a video and saving the predictions into a folder
segmentor.predict_from_video(video_path = "sample_data/videos/seg_sample.mov")

Generating synthetic images of embryos with a Pre-trained GAN

  • Importing the model
from devolearn import Generator, embryo_generator_model
generator = embryo_generator_model()
  • Generating a picture and viewing it
gen_image = generator.generate()  
plt.imshow(gen_image)
plt.show()
  • Generating n images and saving them into foldername with a user set size
generator.generate_n_images(n = 5, foldername= "generated_images", image_size= (700,500))

Predicting populations of cells within the C. elegans embryo

  • Importing the population model for inferences
from devolearn import lineage_population_model
  • Loading a model instance to be used to estimate lineage populations of embryos from videos/photos.
model = lineage_population_model(mode = "cpu")
  • Making a prediction from an image
print(model.predict(image_path = "sample_data/images/embryo_sample.png"))
  • Making predictions from a video and saving the predictions into a CSV file
results = model.predict_from_video(video_path = "sample_data/videos/embryo_timelapse.mov", save_csv = True, csv_name = "video_preds.csv", ignore_first_n_frames= 10, ignore_last_n_frames= 10 )
  • Plotting the model's predictions
plot = model.create_population_plot_from_video(video_path = "sample_data/videos/embryo_timelapse.mov", save_plot= True, plot_name= "plot.png", ignore_last_n_frames= 0 )
plot.show()

Contact us

Authors/maintainers:

Feel free to join our slack!

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

devolearn-0.1.6.tar.gz (9.0 kB view details)

Uploaded Source

Built Distribution

devolearn-0.1.6-py3-none-any.whl (11.3 kB view details)

Uploaded Python 3

File details

Details for the file devolearn-0.1.6.tar.gz.

File metadata

  • Download URL: devolearn-0.1.6.tar.gz
  • Upload date:
  • Size: 9.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.21.0 setuptools/49.2.1 requests-toolbelt/0.9.1 tqdm/4.43.0 CPython/3.7.3

File hashes

Hashes for devolearn-0.1.6.tar.gz
Algorithm Hash digest
SHA256 301d788844040ccb905e39a08c07665b77f96b1f86d5af0ef968cb88fe382bbe
MD5 490ddfa7253668c4a84db3dc81a5fcbc
BLAKE2b-256 f8dbbf888136e4099865b91c5895bd657c489e27ad2ac77ef5585ff2e71af1f4

See more details on using hashes here.

File details

Details for the file devolearn-0.1.6-py3-none-any.whl.

File metadata

  • Download URL: devolearn-0.1.6-py3-none-any.whl
  • Upload date:
  • Size: 11.3 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.21.0 setuptools/49.2.1 requests-toolbelt/0.9.1 tqdm/4.43.0 CPython/3.7.3

File hashes

Hashes for devolearn-0.1.6-py3-none-any.whl
Algorithm Hash digest
SHA256 632ec569bcdcb62ea51f6f13c51e9b9c7a5467487984df11d76e645efd9946e3
MD5 78209200acdd4dfa5af8d487a20beae5
BLAKE2b-256 b3e00bd5f6ad00bcb3da32e256db6af74c844579244c4139a9f214ed540df44b

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page