Skip to main content

Accelerate data driven research on embryos with deep learning models

Project description

Open In Colab

Contents

Installation

pip install devolearn

Example notebooks

Segmenting the C. elegans embryo

  • Importing the model
from devolearn import embryo_segmentor
segmentor = embryo_segmentor()
  • Running the model on an image and viewing the prediction
seg_pred = segmentor.predict(image_path = "sample_data/images/seg_sample.jpg")
plt.imshow(seg_pred)
plt.show()
  • Running the model on a video and saving the predictions into a folder
filenames = segmentor.predict_from_video(video_path = "sample_data/videos/seg_sample.mov", centroid_mode = False, save_folder = "preds")
  • Finding the centroids of the segmented features
seg_pred, centroids = segmentor.predict(image_path = "sample_data/images/seg_sample.jpg", centroid_mode = True)
plt.imshow(seg_pred)
plt.show()
  • Saving the centroids from each frame into a CSV
df = segmentor.predict_from_video(video_path = "sample_data/videos/seg_sample.mov", centroid_mode = True, save_folder = "preds")
df.to_csv("centroids.csv")

Generating synthetic images of embryos with a Pre-trained GAN

  • Importing the model
from devolearn import Generator, embryo_generator_model
generator = embryo_generator_model()
  • Generating a picture and viewing it
gen_image = generator.generate()  
plt.imshow(gen_image)
plt.show()
  • Generating n images and saving them into foldername with a custom size
generator.generate_n_images(n = 5, foldername= "generated_images", image_size= (700,500))

Predicting populations of cells within the C. elegans embryo

  • Importing the population model for inferences
from devolearn import lineage_population_model
  • Loading a model instance to be used to estimate lineage populations of embryos from videos/photos.
model = lineage_population_model(mode = "cpu")
  • Making a prediction from an image
print(model.predict(image_path = "sample_data/images/embryo_sample.png"))
  • Making predictions from a video and saving the predictions into a CSV file
results = model.predict_from_video(video_path = "sample_data/videos/embryo_timelapse.mov", save_csv = True, csv_name = "video_preds.csv", ignore_first_n_frames= 10, ignore_last_n_frames= 10 )
  • Plotting the model's predictions from a video
plot = model.create_population_plot_from_video(video_path = "sample_data/videos/embryo_timelapse.mov", save_plot= True, plot_name= "plot.png", ignore_last_n_frames= 0 )
plot.show()

Contact us

Authors/maintainers:

Feel free to join our Slack workspace!

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

devolearn-0.2.0.tar.gz (1.9 MB view details)

Uploaded Source

Built Distribution

devolearn-0.2.0-py3-none-any.whl (1.9 MB view details)

Uploaded Python 3

File details

Details for the file devolearn-0.2.0.tar.gz.

File metadata

  • Download URL: devolearn-0.2.0.tar.gz
  • Upload date:
  • Size: 1.9 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.21.0 setuptools/49.2.1 requests-toolbelt/0.9.1 tqdm/4.43.0 CPython/3.7.3

File hashes

Hashes for devolearn-0.2.0.tar.gz
Algorithm Hash digest
SHA256 d1e49dbc67322e2c98c292f94305712b1779c8c1c11936d3f410ed31f84d2a89
MD5 0d1690ae143b247b4f968143d61d55b8
BLAKE2b-256 58528e254218ab0587606170e3bf50db3506d37cc636d9ed19b37825d7f3e5dd

See more details on using hashes here.

File details

Details for the file devolearn-0.2.0-py3-none-any.whl.

File metadata

  • Download URL: devolearn-0.2.0-py3-none-any.whl
  • Upload date:
  • Size: 1.9 MB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.21.0 setuptools/49.2.1 requests-toolbelt/0.9.1 tqdm/4.43.0 CPython/3.7.3

File hashes

Hashes for devolearn-0.2.0-py3-none-any.whl
Algorithm Hash digest
SHA256 495117e1582d6e16129bf5d1aff41e69c066113c84c8b79b279f52d349434957
MD5 d265e32c9aa6b8b86e332c6c17510d49
BLAKE2b-256 17b3443b8a2914031f836b8a05226a33b16685d26ac012799edaefca3b9c21e9

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page