Skip to main content

Accelerate data driven research in developmental biology with deep learning models

Project description

Build Status Open In Colab

Contents

Installation

pip install devolearn

Example notebooks

Segmenting the C. elegans embryo

  • Importing the model
from devolearn import embryo_segmentor
segmentor = embryo_segmentor()
  • Running the model on an image and viewing the prediction
seg_pred = segmentor.predict(image_path = "sample_data/images/seg_sample.jpg")
plt.imshow(seg_pred)
plt.show()
  • Running the model on a video and saving the predictions into a folder
filenames = segmentor.predict_from_video(video_path = "sample_data/videos/seg_sample.mov", centroid_mode = False, save_folder = "preds")
  • Finding the centroids of the segmented features
seg_pred, centroids = segmentor.predict(image_path = "sample_data/images/seg_sample.jpg", centroid_mode = True)
plt.imshow(seg_pred)
plt.show()
  • Saving the centroids from each frame into a CSV
df = segmentor.predict_from_video(video_path = "sample_data/videos/seg_sample.mov", centroid_mode = True, save_folder = "preds")
df.to_csv("centroids.csv")

Generating synthetic images of embryos with a Pre-trained GAN

  • Importing the model
from devolearn import Generator, embryo_generator_model
generator = embryo_generator_model()
  • Generating a picture and viewing it with matplotlib
gen_image = generator.generate()  
plt.imshow(gen_image)
plt.show()
  • Generating n images and saving them into foldername with a custom size
generator.generate_n_images(n = 5, foldername= "generated_images", image_size= (700,500))

Predicting populations of cells within the C. elegans embryo

  • Importing the population model for inferences
from devolearn import lineage_population_model
  • Loading a model instance to be used to estimate lineage populations of embryos from videos/photos.
model = lineage_population_model(mode = "cpu")
  • Making a prediction from an image
print(model.predict(image_path = "sample_data/images/embryo_sample.png"))
  • Making predictions from a video and saving the predictions into a CSV file
results = model.predict_from_video(video_path = "sample_data/videos/embryo_timelapse.mov", save_csv = True, csv_name = "video_preds.csv", ignore_first_n_frames= 10, ignore_last_n_frames= 10 )
  • Plotting the model's predictions from a video
plot = model.create_population_plot_from_video(video_path = "sample_data/videos/embryo_timelapse.mov", save_plot= True, plot_name= "plot.png", ignore_last_n_frames= 0 )
plot.show()

Contact us

Authors/maintainers:

Feel free to join our Slack workspace!

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

devolearn-0.2.2.tar.gz (1.9 MB view details)

Uploaded Source

Built Distribution

devolearn-0.2.2-py3-none-any.whl (1.9 MB view details)

Uploaded Python 3

File details

Details for the file devolearn-0.2.2.tar.gz.

File metadata

  • Download URL: devolearn-0.2.2.tar.gz
  • Upload date:
  • Size: 1.9 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/53.0.0 requests-toolbelt/0.9.1 tqdm/4.56.0 CPython/3.8.5

File hashes

Hashes for devolearn-0.2.2.tar.gz
Algorithm Hash digest
SHA256 e38e57dc108337d6175ca5601c55549f8c72ed226b2983b82057b7674ff6601f
MD5 d7c670ebe40b44e8fab4751679bcda40
BLAKE2b-256 9056ef0f72c15f377b22d2cd704bfcc09ac9b695ed6718a23368a9d54ec1908d

See more details on using hashes here.

File details

Details for the file devolearn-0.2.2-py3-none-any.whl.

File metadata

  • Download URL: devolearn-0.2.2-py3-none-any.whl
  • Upload date:
  • Size: 1.9 MB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/53.0.0 requests-toolbelt/0.9.1 tqdm/4.56.0 CPython/3.8.5

File hashes

Hashes for devolearn-0.2.2-py3-none-any.whl
Algorithm Hash digest
SHA256 78242cc6836330ed8b893ec6c319d4f6b5a115cff66d8ff610bfa2b34c1c9e26
MD5 b54429ae106a12507a14189d635d31a9
BLAKE2b-256 683880ddea27fff13f738fded92d0c15a6fee2738096cae155e5f114a8ff201f

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page