Skip to main content

Accelerate data driven research in developmental biology with deep learning models

Project description

Build Status Open In Colab

Contents

Installation

pip install devolearn

Example notebooks

Segmenting the C. elegans embryo

  • Importing the model
from devolearn import embryo_segmentor
segmentor = embryo_segmentor()
  • Running the model on an image and viewing the prediction
seg_pred = segmentor.predict(image_path = "sample_data/images/seg_sample.jpg")
plt.imshow(seg_pred)
plt.show()
  • Running the model on a video and saving the predictions into a folder
filenames = segmentor.predict_from_video(video_path = "sample_data/videos/seg_sample.mov", centroid_mode = False, save_folder = "preds")
  • Finding the centroids of the segmented features
seg_pred, centroids = segmentor.predict(image_path = "sample_data/images/seg_sample.jpg", centroid_mode = True)
plt.imshow(seg_pred)
plt.show()
  • Saving the centroids from each frame into a CSV
df = segmentor.predict_from_video(video_path = "sample_data/videos/seg_sample.mov", centroid_mode = True, save_folder = "preds")
df.to_csv("centroids.csv")

Generating synthetic images of embryos with a Pre-trained GAN

  • Importing the model
from devolearn import Generator, embryo_generator_model
generator = embryo_generator_model()
  • Generating a picture and viewing it with matplotlib
gen_image = generator.generate()  
plt.imshow(gen_image)
plt.show()
  • Generating n images and saving them into foldername with a custom size
generator.generate_n_images(n = 5, foldername= "generated_images", image_size= (700,500))

Predicting populations of cells within the C. elegans embryo

  • Importing the population model for inferences
from devolearn import lineage_population_model
  • Loading a model instance to be used to estimate lineage populations of embryos from videos/photos.
model = lineage_population_model(mode = "cpu")
  • Making a prediction from an image
print(model.predict(image_path = "sample_data/images/embryo_sample.png"))
  • Making predictions from a video and saving the predictions into a CSV file
results = model.predict_from_video(video_path = "sample_data/videos/embryo_timelapse.mov", save_csv = True, csv_name = "video_preds.csv", ignore_first_n_frames= 10, ignore_last_n_frames= 10 )
  • Plotting the model's predictions from a video
plot = model.create_population_plot_from_video(video_path = "sample_data/videos/embryo_timelapse.mov", save_plot= True, plot_name= "plot.png", ignore_last_n_frames= 0 )
plot.show()

Contact us

Authors/maintainers:

Feel free to join our Slack workspace!

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

devolearn-0.2.3.tar.gz (1.9 MB view details)

Uploaded Source

Built Distribution

devolearn-0.2.3-py3-none-any.whl (1.9 MB view details)

Uploaded Python 3

File details

Details for the file devolearn-0.2.3.tar.gz.

File metadata

  • Download URL: devolearn-0.2.3.tar.gz
  • Upload date:
  • Size: 1.9 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/53.0.0 requests-toolbelt/0.9.1 tqdm/4.56.0 CPython/3.8.5

File hashes

Hashes for devolearn-0.2.3.tar.gz
Algorithm Hash digest
SHA256 5e4f245929121d5e2d43dbb06380640d2382595360dcea55bd31380e2a1b584f
MD5 1ec6ba33842baca3e3377ebea828ca9a
BLAKE2b-256 a6782b91999f382e20c569c0fa14cb5c3a33a534c193534af4542e69aef6e920

See more details on using hashes here.

File details

Details for the file devolearn-0.2.3-py3-none-any.whl.

File metadata

  • Download URL: devolearn-0.2.3-py3-none-any.whl
  • Upload date:
  • Size: 1.9 MB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/53.0.0 requests-toolbelt/0.9.1 tqdm/4.56.0 CPython/3.8.5

File hashes

Hashes for devolearn-0.2.3-py3-none-any.whl
Algorithm Hash digest
SHA256 0f8dec6d1c7549a2408b3fd7adc6774704630572edb16d2ebf2c40574f287740
MD5 f117210a96cca58549e39a37ee0aae97
BLAKE2b-256 4c8e20cbd5a37c219296917430b6cf28d6ce361941afa1f18475111093d5499a

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page