Skip to main content

Metrics evaluation for binary classification model

Project description

This library used for evaluate machine learning and deep learning algorithm, still on progress and will be improved as long as there are opportunity to do it.

Binary classification algorithm target for current phase: 1. SVM 2. Logistic Regression 3. KNN 4. Decision Tree 5. Random Forest 6. Neural Network

How to initialise this library: 1. Type ‘from devyl import evaluate’ to call the library 2. create the function: ML – variablename = evaluate.binary(algorithm, xtrain, xtest, ytrain, ytest) DL – variablename = evaluate.neuralnet(algorithm, xtrain, xtest, ytrain, ytest) – it need algorithm that already been fit with training dataset. comparison score – variablename = evaluate.compare(listname) – it need the list of the score summary of all algorithm 3. The binary and neuralnet function contains: - plot_confusionmatrix() – for visualise confusion matrix - print_score(string) – this function will calculate the accuracy score, log loss, precision, recall, f1, and roc_auc score for training and testing dataset - auc_plot() or auc_plot(history, epochs) for neural network – this function will visualise learning curve from the model with training and testing phase comparison - score_table – to call score summary from the model it will return array of metrics score 4. The compare function contains: - plot_accuracycomparison() – visualise accuracy score comparison between training and testing - plot_lossccomparison() – visualise loss score comparison between training and testing - plot_precisioncomparison() – visualise precision score comparison between class 1 and 0 - plot_recallcomparison() – visualise recall score comparison between class 1 and 0 - plot_ROCcomparison() – visualise roc_auc score comparison between training and testing

Please send an email to imthedevyl@gmail.com for any feedback to improve this library’’’

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

devyl-0.0.5.tar.gz (5.3 kB view details)

Uploaded Source

File details

Details for the file devyl-0.0.5.tar.gz.

File metadata

  • Download URL: devyl-0.0.5.tar.gz
  • Upload date:
  • Size: 5.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.0 CPython/3.9.7

File hashes

Hashes for devyl-0.0.5.tar.gz
Algorithm Hash digest
SHA256 40c7bdb25a6e93fe4b35d61ed5eaa73ea478dcb58a0f19d96086cde08496f700
MD5 9f77b71e1b6ce4e80b0c587854c21408
BLAKE2b-256 4bc956aa96f96369f12a19156ead9e6794933997ee9bf3605fd2ce6ece955548

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page