Skip to main content

2D pose estimation pipeline for tethered Drosophila.

Project description

Drosophila 2D Pose

  • Load the model.
from model import Drosophila2DPose
from parser import create_parser

checkpoint_path = '/home/user/Desktop/DeepFly3D/weights/sh8_deepfly.tar'
args = create_parser().parse_args('')
model = Drosophila2DPose(checkpoint_path=checkpoint_path, **args.__dict__).cuda()
  • Load the data.
from inference import path2inp
from dataset import Drosophila2Dataset
from torch.utils.data import DataLoader

image_path = '/home/user/Desktop/DeepFly3D/data/test/'
inp = path2inp(image_path) # extract list of images under the folder
dat = DataLoader(Drosophila2Dataset(inp), batch_size=8)
  • Do the inference.
from inference import inference
points2d = inference(model, dat)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

df2d-0.13.tar.gz (7.3 kB view details)

Uploaded Source

Built Distribution

df2d-0.13-py3-none-any.whl (9.1 kB view details)

Uploaded Python 3

File details

Details for the file df2d-0.13.tar.gz.

File metadata

  • Download URL: df2d-0.13.tar.gz
  • Upload date:
  • Size: 7.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.8.3 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.6.13

File hashes

Hashes for df2d-0.13.tar.gz
Algorithm Hash digest
SHA256 a9a85987728058c63d097fd0df277fe29a045f9b4d26a81acf125ae3d67c667b
MD5 32e44a8aa8d2db48a7e4743d6de6dd92
BLAKE2b-256 43a43f40cec96bf54deea2146f5a6cee57bc0b1159576625608ffd4010d5c741

See more details on using hashes here.

File details

Details for the file df2d-0.13-py3-none-any.whl.

File metadata

  • Download URL: df2d-0.13-py3-none-any.whl
  • Upload date:
  • Size: 9.1 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.8.3 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.6.13

File hashes

Hashes for df2d-0.13-py3-none-any.whl
Algorithm Hash digest
SHA256 b05421ea6cd7a345f4fe82192a2bea9857f0d923c24886e739a6f5b841534c7a
MD5 0684ec096c59b37bdabc81412c5af3f3
BLAKE2b-256 ef6434ff6839f457e0a8d130a3df7fc2c2f5e55e12d84bbb83f873d7febf3031

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page