Skip to main content

GUI and 3D pose estimation pipeline for tethered Drosophila.

Project description

DeepFly3D

License: GPL v3

Alt text

DeepFly3D is a PyTorch and PyQT5 implementation of 2D-3D tethered Drosophila pose estimation. It aims to provide an interface for pose estimation and to permit further correction of 2D pose estimates, which are automatically converted to 3D pose.

DeepFly3D does not require a calibration pattern, it enforces geometric constraints using pictorial structures, which corrects most of the erros, and the remaining errors are automatically detected can be dealt easily with GUI assistance.

Code for data preparation and augmentation are taken from the Stacked hourglass network. We also use the Stacked Hourglass model for 2D pose estimation. We implement custom advances (e.g., GUI) using PyQT5.

Changes

Changes in 0.4

  • Using the CLI, the output folder can be changed using the --output-folder flag
  • CLI and GUI now use the same pose estimation code, so changes will automatically propagate to both
  • Minor tweaks in the GUI layout, functionality kept unchanged

Changes in 0.3

  • Results are saved in df3d folder instead of the image folder.
  • Much faster startup time.
  • Cameras are automatically ordered using Regular Expressions.
  • CLI improvements. Now it includes 3D pose.

Changes in 0.2

  • Changing name from deepfly3d to df3d
  • Adding cli interface with df3d-cli
  • Removing specific dependencies for numpy and scipy
  • Removing L/R buttons, so you can see all the data at once
  • Removing the front camera
  • Faster startup time, less time spent on searching for the image folder
  • Better notebooks for plotting
  • Adding procrustes support. Now all the output is registere to template skeleton.
  • Bug fixes in CameraNetwork. Now calibration with arbitrary camera sequence is possible.

Known Problems

  • Some insability in automatic correction

GUI

Alt text DeepFly3D provides a nice GUI to interact with the data. Using DeepFly3D GUI, you can visualize:

  • Raw data
  • Probability maps
  • Raw predictions
  • Automatic corrections

And you can perform:

  • 2D pose estimation
  • Calibration without calibration pattern
  • Saving the final 3D estimations
  • Manual Correction

Identifying erroneous estimates automatically

Alt text DeepFly3D can automatically detect when 2D pose estimation is failed.

Auto-correction

Alt text DeepFly3D will try to fix these mistaked using multi-view geometry and pictorial structures. In the next iteration of training, you can also use these examples to train the 2D estimation network! Auto-correction is perfomed if 2D pose estimation and calibration are complete.

Assisting manual correction

In the 'Correction' mode, the GUI tries to correct errors using pictorial structures. To save these corrections, press T. Please check the associated manuscript (Günel et al. 2019) for implementation details. Alt text In the next iteration of training, you can use these examples to train the network!

Visualization

And nice visualizations! Check the Visualization doc for details. In general, displaying pose estimation results should be as easy as:

import matplotlib.pyplot as plt
from deepfly.CameraNetwork import CameraNetwork
camNet = CameraNetwork(image_folder=image_folder)
image_folder = './data/test'

plt.imshow(camNet.cam_list[1].plot_2d())

and to display heatmaps:

plt.imshow(camNet.cam_list[1].plot_heatmap())

To create more complicated figures, or replicate the figures from the paper, you can use the the pose_result file which is saved in the same folder as the images. The notebook, notebook_visualize/visualize.ipynb, shows you the steps to create the following figure:

To visualize the time series instead, use the notebook notebook_visualize/time_series.ipynb. It should output 2D/3D pose, along with a few selected time series.

Using different datasets

It is possible to use DeepFly3D on other animals! Check the Adaptation text to see an example of H3.6m multi-view human dataset.

References

@inproceedings{Gunel19DeepFly3D,
  author    = {Semih Gunel and
               Helge Rhodin and
               Daniel Morales and
               João Compagnolo and
               Pavan Ramdya and
               Pascal Fua},
  title     = {DeepFly3D, a deep learning-based approach for 3D limb and appendage tracking in tethered, adult Drosophila},
  bookTitle = {eLife},
  doi       = {10.7554/eLife.48571},
  year      = {2019}
}

@inproceedings{Newell16Stacked,
  author    = {Alejandro Newell and
               Kaiyu Yang and
               Jia Deng},
  title     = {Stacked Hourglass Networks for Human Pose Estimation},
  booktitle = {Computer Vision - {ECCV} 2016 - 14th European Conference, Amsterdam,
               The Netherlands, October 11-14, 2016, Proceedings, Part {VIII}},
  pages     = {483--499},
  year      = {2016},
  doi       = {10.1007/978-3-319-46484-8\_29},
}

We want to thank to Florian Aymanns for testing of the software and for his helpful comments.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

df3d-0.53.tar.gz (50.2 kB view details)

Uploaded Source

Built Distribution

df3d-0.53-py3-none-any.whl (33.0 kB view details)

Uploaded Python 3

File details

Details for the file df3d-0.53.tar.gz.

File metadata

  • Download URL: df3d-0.53.tar.gz
  • Upload date:
  • Size: 50.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.8.3 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.6.13

File hashes

Hashes for df3d-0.53.tar.gz
Algorithm Hash digest
SHA256 ebd4e1d3da90c3d71b690c50f9aef49bddb758b2d3b3f323709872d587e0c790
MD5 939726ff1ded990436cb6a4b02680922
BLAKE2b-256 581c9b9894b8775f1f3a39d7f1acfb888aebd0384c13d00fc7cbc4e84a32179c

See more details on using hashes here.

File details

Details for the file df3d-0.53-py3-none-any.whl.

File metadata

  • Download URL: df3d-0.53-py3-none-any.whl
  • Upload date:
  • Size: 33.0 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.8.3 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.6.13

File hashes

Hashes for df3d-0.53-py3-none-any.whl
Algorithm Hash digest
SHA256 391cd2ff5a328ba0443c4d7e033d9647924043a2921b6c37270ea41f6d3e41ab
MD5 309f4eda1a7d55cd87277611ce47c535
BLAKE2b-256 d5e9a76bf489a4f9c58ae0700c65bf6f6402eeb9143cfd93ab79699bda9c1566

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page