Skip to main content

dfhelper is a Python package that simplifies data preprocessing and visualization in Jupyter Notebooks.

Project description

🛠️ dfhelper


What is this?

Dfhelper is a versatile Python package that streamlines data preprocessing and visualization in Jupyter Notebooks. With intuitive functions for cleaning and transforming pandas DataFrames and the ability to render them as interactive HTML tables, this toolkit is an essential addition to any data scientist's arsenal. Simplify your data analysis process and gain clearer insights with dfhelper.

Quick installation

!pip install dfhelper

Main functionality

  1. Output date frames in HTML. This is extremely useful when working with multiple selections
  2. Output in HTML df.info() multiple dataframes
  3. Output the size of the date frames in html.
  4. The ability to display dataframes vertically and horizontally
  5. Functions for summarizing the date of Ephraim, created for conducting EDA

Quick Guide

import pandas as pd
from dfhelper.viz import df_view, df_info_view, df_shape_view
from dfhelper.scout import summarize_df, summarize_dfs


# viz
df1 = pd.DataFrame(
            {"A": [1, 0, 0, None],
             "B": [1, 1, 2, 2],
             "C": [None, None, None, None]}
        )

df2 = pd.DataFrame(
            {"A": [1, 5, 0, 10],
             "B": [1, 1, 2, 2],
             "C": [None, 4, 16, 101]}
        )

# Output of two dataframes
df_view(df1, df2)
# Output information about two dataframes
df_info_view(df1, df2)
# Output of the sizes of two dataframes
df_shape_view(df1, df2)

# scount
# Table of the main characteristics of the dataframe
summarize_df(df1)
# Displaying the main characteristics of dataframes
summarize_dfs(df1, df2)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

dfhelper-0.0.1.tar.gz (7.7 kB view details)

Uploaded Source

Built Distribution

dfhelper-0.0.1-py3-none-any.whl (8.2 kB view details)

Uploaded Python 3

File details

Details for the file dfhelper-0.0.1.tar.gz.

File metadata

  • Download URL: dfhelper-0.0.1.tar.gz
  • Upload date:
  • Size: 7.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.4

File hashes

Hashes for dfhelper-0.0.1.tar.gz
Algorithm Hash digest
SHA256 3558c199ccbd42718394c02eb16e8ee459ab95a9b22dc0e978716a4b72f7715d
MD5 9f95701784e5a1ce6067279e25fc8de5
BLAKE2b-256 339b91d28104f984f27fea421307ff6d383cbd67ff8b7b0a7002885342bfe3a7

See more details on using hashes here.

File details

Details for the file dfhelper-0.0.1-py3-none-any.whl.

File metadata

  • Download URL: dfhelper-0.0.1-py3-none-any.whl
  • Upload date:
  • Size: 8.2 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.4

File hashes

Hashes for dfhelper-0.0.1-py3-none-any.whl
Algorithm Hash digest
SHA256 cab796364417161541ac116960bf4e7729619f8e1063e53514df1845f635561b
MD5 e329b2da0bd2343d59d850c9ed432aaa
BLAKE2b-256 17b9a8ba74f1a24721b03358663ea273ffb1714913d121d540fe6cc8909f3072

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page