Skip to main content

A package implementing DFNDFL, an algorithm that solves mixed-integer nonsmooth constrained optimization problems whose constraint functions are avaliable only as the oytput of a black-box zeroth-order oracle.

Project description

DFNDFL Python Package

The DFNDFL Python package provides tools for solving Direct Function Optimization (DFO) problems. The package allows users to define custom optimization problems and solve them using the algorithms DFNDFL or DFL.

Installation

The package can be installed with pip:

python3 -m pip install dfndfl

Usage

Problem definition

To use the DFNDFL package, first define an optimization problem in a Python file. The problem file should define the following variables:

  • name: string - name of the problem
  • startp: numpy array - the starting point for the continuous problem
  • lb: numpy array - the lower bounds of the continuous problem
  • ub: numpy array - the upper bounds of the continuous problem
  • nint: int - the number of discrete variables (>= 2)
  • ncont: int - the number of continuous variables (>= 2), (the variables are so intended: x[0] ... x[ncont-1] are the continuous variables and x[ncont] ... x[n-1] are the discrete variables)
  • lbmix: numpy array - the actual lower bounds of the mixed integer problem
  • ubmix: numpy array - the actual upper bounds of the mixed integer problem
  • x_initial: numpy array - the actual initial point of the mixed integer problem
  • feval: function handle - function to compute the objective function value (N.B. the point must be reconstructed through the use of reconstruct_xmix before calling feval)

Here's a sample problem definition:

import numpy as np

name      = 'MISO prob. 10'
nint   = 30
ncont  = n-nint
lb     =-15.0*np.ones(n)
ub     = 30.0*np.ones(n)
lbmix  =-15.0*np.ones(n)
ubmix  = 30.0*np.ones(n)
startp =   7.0*np.ones(n) 
x_initial =7.0*np.ones(n) 

def feval(x):  
    f = - 20*np.exp(-0.2*np.sqrt(np.sum(x**2)/15)) - np.exp(np.sum(np.cos(2*np.pi*x))/15)
    return f

Running a problem

To run a problem from the command line, use:

python3 -m dfndfl.run -p path/to/your/problem.py [options]

Command-Line Arguments

The run.py script accepts several command-line arguments to control the optimization process:

Required arguments:

  • -p PROBLEM_PATH, --problem-path PROBLEM_PATH: Path to the Python file containing the problem definition

Optional arguments:

  • -h, --help: Show an help message and exit
  • -c, --constrained: Solve constrained problems
  • -a {DFN_DFL,DFL}, --alg {DFN_DFL,DFL}: Name of algorithm to be used
  • -m MAX_FUN, --max_fun MAX_FUN: Maximum number of function evaluations
  • -o OUTLEV, --outlev OUTLEV: Output level
  • -M NM_MEMORY, --NM_memory NM_MEMORY: History size for nonmonotone linesearch

Logging

The DFNDFL package uses Python's logging module to log results and progress. The logger's name is set as dfndfl.

License

This project is licensed under the GNU General Public License - see the LICENSE for details.

Useful links

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

dfndfl-1.1.1.tar.gz (59.1 kB view details)

Uploaded Source

Built Distribution

dfndfl-1.1.1-py3-none-any.whl (40.8 kB view details)

Uploaded Python 3

File details

Details for the file dfndfl-1.1.1.tar.gz.

File metadata

  • Download URL: dfndfl-1.1.1.tar.gz
  • Upload date:
  • Size: 59.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.10.12

File hashes

Hashes for dfndfl-1.1.1.tar.gz
Algorithm Hash digest
SHA256 d9106b6d034889ad130e77dc082c29c1931c0807fbabf252a344a10faf7dcf3a
MD5 4f70dbe084b9038d4e929fb0a102433b
BLAKE2b-256 4da9fae4704fd2b143ba05008666d8b66adb524dc63cd2e5f2b639f99e26977f

See more details on using hashes here.

File details

Details for the file dfndfl-1.1.1-py3-none-any.whl.

File metadata

  • Download URL: dfndfl-1.1.1-py3-none-any.whl
  • Upload date:
  • Size: 40.8 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.10.12

File hashes

Hashes for dfndfl-1.1.1-py3-none-any.whl
Algorithm Hash digest
SHA256 bfae48af81d357ab1973de65895c594003b4692a6176ee5f6589053dfb2200a5
MD5 aa25604f826437644301aeb31a0b2a05
BLAKE2b-256 6146dd69362c767cda3028e29ca5e8388bf4cc690730174a9d19a87f60606a76

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page