Skip to main content

Python API of the DFT-D3 project

Project description

Python interface for the D3 dispersion model. This Python project is targeted at developers who want to interface their project via Python with s-dftd3.

This interface provides access to the C-API of s-dftd3 via the CFFI module. The low-level CFFI interface is available in the dftd3.libdftd3 module and only required for implementing other interfaces. A more pythonic interface is provided in the dftd3.interface module which can be used to build more specific interfaces.

from dftd3.interface import RationalDampingParam, DispersionModel
import numpy as np
numbers = np.array([1, 1, 6, 5, 1, 15, 8, 17, 13, 15, 5, 1, 9, 15, 1, 15])
positions = np.array([  # Coordinates in Bohr
    [+2.79274810283778, +3.82998228828316, -2.79287054959216],
    [-1.43447454186833, +0.43418729987882, +5.53854345129809],
    [-3.26268343665218, -2.50644032426151, -1.56631149351046],
    [+2.14548759959147, -0.88798018953965, -2.24592534506187],
    [-4.30233097423181, -3.93631518670031, -0.48930754109119],
    [+0.06107643564880, -3.82467931731366, -2.22333344469482],
    [+0.41168550401858, +0.58105573172764, +5.56854609916143],
    [+4.41363836635653, +3.92515871809283, +2.57961724984000],
    [+1.33707758998700, +1.40194471661647, +1.97530004949523],
    [+3.08342709834868, +1.72520024666801, -4.42666116106828],
    [-3.02346932078505, +0.04438199934191, -0.27636197425010],
    [+1.11508390868455, -0.97617412809198, +6.25462847718180],
    [+0.61938955433011, +2.17903547389232, -6.21279842416963],
    [-2.67491681346835, +3.00175899761859, +1.05038813614845],
    [-4.13181080289514, -2.34226739863660, -3.44356159392859],
    [+2.85007173009739, -2.64884892757600, +0.71010806424206],
])
model = DispersionModel(numbers, positions)
res = model.get_dispersion(RationalDampingParam(method="pbe0"), grad=False)
print(res.get("energy"))  # Results in atomic units
# => -0.029489232932494884

QCSchema Integration

This Python API natively understands QCSchema and the QCArchive infrastructure. If the QCElemental package is installed the dftd3.qcschema module becomes importable and provides the run_qcschema function.

from dftd3.qcschema import run_qcschema
import qcelemental as qcel
atomic_input = qcel.models.AtomicInput(
    molecule = qcel.models.Molecule(
        symbols = ["O", "H", "H"],
        geometry = [
            0.00000000000000,  0.00000000000000, -0.73578586109551,
            1.44183152868459,  0.00000000000000,  0.36789293054775,
           -1.44183152868459,  0.00000000000000,  0.36789293054775
        ],
    ),
    driver = "energy",
    model = {
        "method": "tpss",
    },
    keywords = {
        "level_hint": "d3bj",
    },
)

atomic_result = run_qcschema(atomic_input)
print(atomic_result.return_result)
# => -0.0004204244108151285

ASE Integration

To integrate with ASE this interface implements an ASE Calculator. The DFTD3 calculator becomes importable if an ASE installation is available.

>>> from ase.build import molecule
>>> from dftd3.ase import DFTD3
>>> atoms = molecule('H2O')
>>> atoms.calc = DFTD3(method="TPSS", damping="d3bj")
>>> atoms.get_potential_energy()
-0.0114416338147162
>>> atoms.calc.set(method="PBE")
{'method': 'PBE'}
>>> atoms.get_potential_energy()
-0.009781913226281063
>>> atoms.get_forces()
array([[-0.00000000e+00 -0.00000000e+00  9.56568982e-05]
       [-0.00000000e+00 -4.06046858e-05 -4.78284491e-05]
       [-0.00000000e+00  4.06046858e-05 -4.78284491e-05]])

To use the DFTD3 calculator as dispersion correction the calculator can be combined using the SumCalculator from the ase.calculators.mixing module.

>>> from ase.build import molecule
>>> from ase.calculators.mixing import SumCalculator
>>> from ase.calculators.nwchem import NWChem
>>> from dftd3.ase import DFTD3
>>> atoms = molecule('H2O')
>>> atoms.calc = SumCalculator([DFTD3(method="PBE", damping="d3bj"), NWChem(xc="PBE")])

For convenience DFTD3 allows to combine itself with another calculator by using the add_calculator method which returns a SumCalculator:

>>> from ase.build import molecule
>>> from ase.calculators.emt import EMT
>>> from dftd4.ase import DFTD3
>>> atoms = molecule("C60")
>>> atoms.calc = DFTD3(method="pbe", damping="d3bj").add_calculator(EMT())
>>> atoms.get_potential_energy()
7.513593999944228
>>> [calc.get_potential_energy() for calc in atoms.calc.calcs]
[-4.850025823367818, 12.363619823312046]

The individual contributions are available by iterating over the list of calculators in calc.calcs. Note that DFTD3 will always place itself as first calculator in the list.

PySCF support

Integration with PySCF is possible by using the dftd3.pyscf module. The module provides a DFTD3Dispersion class to construct a PySCF compatible calculator for evaluating the dispersion energy and gradients.

>>> from pyscf import gto
>>> import dftd3.pyscf as disp
>>> mol = gto.M(
...     atom="""
...          C   -0.189833176  -0.645396435   0.069807761
...          C    1.121636324  -0.354065576   0.439096514
...          C    1.486520953   0.962572632   0.712107225
...          C    0.549329390   1.989209324   0.617868956
...          C   -0.757627135   1.681862630   0.246856908
...          C   -1.138190460   0.370551816  -0.028582325
...          Br  -2.038462778   3.070459841   0.115165429
...          H    1.852935245  -1.146434699   0.514119204
...          H    0.825048723   3.012176989   0.829385472
...          H    2.502259769   1.196433556   1.000317333
...          H   -2.157140187   0.151608161  -0.313181471
...          H   -0.480820487  -1.664983631  -0.142918416
...          S   -4.157443472   5.729584377  -0.878761129
...          H   -4.823791426   4.796089466  -1.563433338
...          C   -2.828338520   5.970593053  -2.091189515
...          H   -2.167577293   6.722356639  -1.668621815
...          H   -2.264954814   5.054835899  -2.240198499
...          H   -3.218524904   6.337447714  -3.035087058
...          """
... )
>>> d3 = disp.DFTD3Dispersion(mol, xc="PW6B95", version="d3bj")
>>> d3.kernel()[0]
array(-0.01009386)
>>> d3.version = "d3zero"  # Change to zero damping
>>> d3.kernel()[0]
array(-0.00574098)
>>> d3.atm = True  # Activate three-body dispersion
>>> d3.kernel()[0]
array(-0.00574289)

To make use of the dispersion correction together with other calculators, the energy method allows to apply a dispersion correction to an existing calculator.

>>> from pyscf import gto, scf
>>> import dftd3.pyscf as disp
>>> mol = gto.M(
...     atom="""
...          O  -1.65542061  -0.12330038   0.00000000
...          O   1.24621244   0.10268870   0.00000000
...          H  -0.70409026   0.03193167   0.00000000
...          H  -2.03867273   0.75372294   0.00000000
...          H   1.57598558  -0.38252146  -0.75856129
...          H   1.57598558  -0.38252146   0.75856129
...          """
... )
>>> grad = disp.energy(scf.RHF(mol)).run().nuc_grad_method()
converged SCF energy = -149.947191000075
>>> g = grad.kernel()
--------------- DFTD3 gradients ---------------
         x                y                z
0 O     0.0171886976     0.0506606246     0.0000000000
1 O     0.0383596853    -0.0459057549     0.0000000000
2 H    -0.0313133974    -0.0125865676    -0.0000000000
3 H     0.0066705789    -0.0380501872     0.0000000000
4 H    -0.0154527822     0.0229409425     0.0215141991
5 H    -0.0154527822     0.0229409425    -0.0215141991
----------------------------------------------

Installing

Conda Version

This project is packaged for the conda package manager and available on the conda-forge channel. To install the conda package manager we recommend the miniforge installer. If the conda-forge channel is not yet enabled, add it to your channels with

conda config --add channels conda-forge

Once the conda-forge channel has been enabled, this project can be installed with:

conda install dftd3-python

Now you are ready to use dftd3, check if you can import it with

>>> import dftd3
>>> from dftd3.libdftd3 import get_api_version
>>> get_api_version()
'1.1.0'

Building the extension module

To perform an out-of-tree build some version of s-dftd3 has to be available on your system and preferably findable by pkg-config. Try to find a s-dftd3 installation you build against first with

pkg-config --modversion s-dftd3

Adjust the PKG_CONFIG_PATH environment variable to include the correct directories to find the installation if necessary.

Using pip

PyPI

This project support installation with pip as an easy way to build the Python API. Precompiled Python wheels for Linux are available on pypi and can be installed with

pip install dftd3

Other platforms need to build from source, the following dependencies are required to do so

  • C compiler to build the C-API and compile the extension module (the compiler name should be exported in the CC environment variable)

  • Python 3.6 or newer

  • The following Python packages are required additionally

Make sure to have your C compiler set to the CC environment variable

export CC=gcc

Install the project with pip

pip install .

If you already have a s-dftd3 installation, e.g. from conda-forge, you can build the Python extension module directly without cloning this repository

pip install "https://github.com/dftd3/simple-dftd3/archive/refs/heads/main.zip#egg=dftd3-python&subdirectory=python"

Using meson

This directory contains a separate meson build file to allow the out-of-tree build of the CFFI extension module. The out-of-tree build requires

  • C compiler to build the C-API and compile the extension module

  • meson version 0.53 or newer

  • a build-system backend, i.e. ninja version 1.7 or newer

  • Python 3.6 or newer with the CFFI package installed

Setup a build with

meson setup _build -Dpython_version=$(which python3)

The Python version can be used to select a different Python version, it defaults to 'python3'. Python 2 is not supported with this project, the Python version key is meant to select between several local Python 3 versions.

Compile the project with

meson compile -C _build

The extension module is now available in _build/dftd3/_libdftd3.*.so. You can install as usual with

meson configure _build --prefix=/path/to/install
meson install -C _build

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

dftd3-1.1.0.tar.gz (643.6 kB view details)

Uploaded Source

Built Distributions

dftd3-1.1.0-pp310-pypy310_pp73-win_amd64.whl (2.0 MB view details)

Uploaded PyPy Windows x86-64

dftd3-1.1.0-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.6 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

dftd3-1.1.0-pp310-pypy310_pp73-macosx_12_0_x86_64.whl (1.9 MB view details)

Uploaded PyPy macOS 12.0+ x86-64

dftd3-1.1.0-pp39-pypy39_pp73-win_amd64.whl (2.0 MB view details)

Uploaded PyPy Windows x86-64

dftd3-1.1.0-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.6 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

dftd3-1.1.0-pp39-pypy39_pp73-macosx_12_0_x86_64.whl (1.9 MB view details)

Uploaded PyPy macOS 12.0+ x86-64

dftd3-1.1.0-pp38-pypy38_pp73-win_amd64.whl (2.0 MB view details)

Uploaded PyPy Windows x86-64

dftd3-1.1.0-pp38-pypy38_pp73-macosx_12_0_x86_64.whl (1.9 MB view details)

Uploaded PyPy macOS 12.0+ x86-64

dftd3-1.1.0-cp311-cp311-win_amd64.whl (2.0 MB view details)

Uploaded CPython 3.11 Windows x86-64

dftd3-1.1.0-cp311-cp311-musllinux_1_2_x86_64.whl (2.0 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.2+ x86-64

dftd3-1.1.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

dftd3-1.1.0-cp311-cp311-macosx_12_0_x86_64.whl (1.9 MB view details)

Uploaded CPython 3.11 macOS 12.0+ x86-64

dftd3-1.1.0-cp310-cp310-win_amd64.whl (2.0 MB view details)

Uploaded CPython 3.10 Windows x86-64

dftd3-1.1.0-cp310-cp310-musllinux_1_2_x86_64.whl (2.0 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.2+ x86-64

dftd3-1.1.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

dftd3-1.1.0-cp310-cp310-macosx_12_0_x86_64.whl (1.9 MB view details)

Uploaded CPython 3.10 macOS 12.0+ x86-64

dftd3-1.1.0-cp39-cp39-win_amd64.whl (2.0 MB view details)

Uploaded CPython 3.9 Windows x86-64

dftd3-1.1.0-cp39-cp39-musllinux_1_2_x86_64.whl (2.0 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.2+ x86-64

dftd3-1.1.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

dftd3-1.1.0-cp39-cp39-macosx_12_0_x86_64.whl (1.9 MB view details)

Uploaded CPython 3.9 macOS 12.0+ x86-64

dftd3-1.1.0-cp38-cp38-win_amd64.whl (2.0 MB view details)

Uploaded CPython 3.8 Windows x86-64

dftd3-1.1.0-cp38-cp38-macosx_12_0_x86_64.whl (1.9 MB view details)

Uploaded CPython 3.8 macOS 12.0+ x86-64

File details

Details for the file dftd3-1.1.0.tar.gz.

File metadata

  • Download URL: dftd3-1.1.0.tar.gz
  • Upload date:
  • Size: 643.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.10.10

File hashes

Hashes for dftd3-1.1.0.tar.gz
Algorithm Hash digest
SHA256 fae514f9cef35613b814834ffa8665e96a65d0b5538475dbde6509c614486a06
MD5 fbaccc3cee5f80e30769f70ad27067d3
BLAKE2b-256 136df2bdb79b69751c6d991e4bd3d3aab4b6c212e45754cba7b8f5cf66428b1a

See more details on using hashes here.

File details

Details for the file dftd3-1.1.0-pp310-pypy310_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for dftd3-1.1.0-pp310-pypy310_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 55c6681a5bd435bb8fa9956036a90268764101b595ebe9f966946e86b3b99600
MD5 176f5de7c5b0725aa3d476b8956c8dbb
BLAKE2b-256 a60056095851d8735dce05f79407b9cddc294ecd1a83140080310e91e3f5234d

See more details on using hashes here.

File details

Details for the file dftd3-1.1.0-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for dftd3-1.1.0-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 05c8b723c144e2e4f463548adbe089be1ff63f350a4ee4587b4f7a416e90f3b2
MD5 46326500d736e4ecc42a4e46c5552ea3
BLAKE2b-256 83d2760a4bd223a3125fec776b2973fb95dd9d954182fec019ed5297fafd178c

See more details on using hashes here.

File details

Details for the file dftd3-1.1.0-pp310-pypy310_pp73-macosx_12_0_x86_64.whl.

File metadata

File hashes

Hashes for dftd3-1.1.0-pp310-pypy310_pp73-macosx_12_0_x86_64.whl
Algorithm Hash digest
SHA256 840033b9ad4693371b4c3c4f8f753991ff50ea4d0d91912052a889cb58c5bd1e
MD5 e8c3eb7724ca493ff9f4597bd536d9cd
BLAKE2b-256 fe7dfd8faea9d98232b9eec0952c655b70880abe0d72efe892217945d00781a8

See more details on using hashes here.

File details

Details for the file dftd3-1.1.0-pp39-pypy39_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for dftd3-1.1.0-pp39-pypy39_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 10e9c2a76221fe26ea114a9e8f178c35b2227ae027d9ba0c9bac16eca51c797c
MD5 c469779a8b9aaf684aa438d49cdacad4
BLAKE2b-256 b64ae4308a7c526bff41b1d0133feb9f7396450a46622fa7b6f4b52847e53361

See more details on using hashes here.

File details

Details for the file dftd3-1.1.0-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for dftd3-1.1.0-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 d19f257efa298d236f88ad2f29abaced7de70cc6e38aa02ee139ff9fd5050875
MD5 5f8b36b023b386faaebf20f497cef264
BLAKE2b-256 6646973b09c2fa6b68d4666f886b699345d8462f7bcd3c8bce6506639c83fecb

See more details on using hashes here.

File details

Details for the file dftd3-1.1.0-pp39-pypy39_pp73-macosx_12_0_x86_64.whl.

File metadata

File hashes

Hashes for dftd3-1.1.0-pp39-pypy39_pp73-macosx_12_0_x86_64.whl
Algorithm Hash digest
SHA256 e7230c6318ff6438c8e453d32f73d8a3cd970189962616e0fca3e08e40a3f6da
MD5 6f25a46be1a867b7d14da1c8709a50ae
BLAKE2b-256 633b717f81e7eddc41e6d7ae411ba3bd81971d63af130e2fd2c8c366576b8aaa

See more details on using hashes here.

File details

Details for the file dftd3-1.1.0-pp38-pypy38_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for dftd3-1.1.0-pp38-pypy38_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 d0b880da55eefdcef6f0ac1ca4fdfbe414ac2a7c21ec150b01f4fa9fcff85bdf
MD5 da402d4c0ffa47cf124089adecb493b9
BLAKE2b-256 429409892aa3b65c5378a6da9e045b57787cb4c24e80c9d4bae3d9afe69ed32d

See more details on using hashes here.

File details

Details for the file dftd3-1.1.0-pp38-pypy38_pp73-macosx_12_0_x86_64.whl.

File metadata

File hashes

Hashes for dftd3-1.1.0-pp38-pypy38_pp73-macosx_12_0_x86_64.whl
Algorithm Hash digest
SHA256 7401a923396f3308a52e461ad2e57ad1cc34ebf23de5b4837d27e569044e39f0
MD5 fcefa9b65a941a937e58a999fc41ef7f
BLAKE2b-256 4a39105efab900b41963412bb308dd41b97a3ea83887c99bed5aac894b567a61

See more details on using hashes here.

File details

Details for the file dftd3-1.1.0-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: dftd3-1.1.0-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 2.0 MB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.10.10

File hashes

Hashes for dftd3-1.1.0-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 4341fe473c51fc4676b1ec73a7ec5d2a9a69ad7c67e5c76645e3743bb0ab0bd2
MD5 36dc6aba95ba3e35195a88caa35598ed
BLAKE2b-256 2ead0f7acc0383ce29f89828b1cdd5b09f718098a5fa64bc2fe3497b67c11a28

See more details on using hashes here.

File details

Details for the file dftd3-1.1.0-cp311-cp311-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for dftd3-1.1.0-cp311-cp311-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 1932d526f4fc58ec94294ca3383dbcb556b9997fa764f16d9e08c56c9b799603
MD5 e3e1e1f317c32f5062348cc620b93ba6
BLAKE2b-256 6b730fe2300f6f8ef07c7990b1e9675c66df51a644211519a2803c4f3dc015c7

See more details on using hashes here.

File details

Details for the file dftd3-1.1.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for dftd3-1.1.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 d454ad8313995e37ecff51674c4a165210ded464585358fc636ff860e34cb093
MD5 d6298160d4c749afef83f17ba5c3351f
BLAKE2b-256 606b7ad2f3e94238699475e1bdb6a7bb38b0575713c283cdb2bdc2a554e20a64

See more details on using hashes here.

File details

Details for the file dftd3-1.1.0-cp311-cp311-macosx_12_0_x86_64.whl.

File metadata

File hashes

Hashes for dftd3-1.1.0-cp311-cp311-macosx_12_0_x86_64.whl
Algorithm Hash digest
SHA256 7572ac4761959d8e6a624143d9dc30685fcc9d4898ba9b2274e47ed85e59f16d
MD5 6ff6cf7e5212485355c4a3c55f720096
BLAKE2b-256 a82a82af5a5ef0497e3229193889ee5e1ecd02da912b0f4114a48b06d33b23a9

See more details on using hashes here.

File details

Details for the file dftd3-1.1.0-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: dftd3-1.1.0-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 2.0 MB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.10.10

File hashes

Hashes for dftd3-1.1.0-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 21d355ff582171e228a9ff0e16d6233cf3d8ba06da925af169570a738a9603ea
MD5 19593e85a6081d649da5d259088a0299
BLAKE2b-256 e22f1bb85bffe8a7c7b131e2654670b95e182a301de1f78a07fa296692e2fece

See more details on using hashes here.

File details

Details for the file dftd3-1.1.0-cp310-cp310-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for dftd3-1.1.0-cp310-cp310-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 795b9780c8c6a8bb84a590fdb4dcd322421ee38b6e70273a6d1993a68b7e6d26
MD5 f2bab532c5b44d212b448fbef02a2dc4
BLAKE2b-256 d38e957a7206f476199e26ad52750dc434cbccd0c62f1767b9763dfec681c900

See more details on using hashes here.

File details

Details for the file dftd3-1.1.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for dftd3-1.1.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 3948552da0cb38cb6abc0781e41bdec5b6fa727b3067d45969155120cbe8d027
MD5 a1cbb3172eedf0c42712fbe1f83d2428
BLAKE2b-256 6f85046df568a8a1605389bcf941850bf8e8238c9d6d564fb0da2a274d45da77

See more details on using hashes here.

File details

Details for the file dftd3-1.1.0-cp310-cp310-macosx_12_0_x86_64.whl.

File metadata

File hashes

Hashes for dftd3-1.1.0-cp310-cp310-macosx_12_0_x86_64.whl
Algorithm Hash digest
SHA256 4318459f8f4eaa73b2c9985d335a4bace5ffa60d08ddfc4f2bf56a61c4ffcd20
MD5 625e96164d9bc5cfca449a6144153779
BLAKE2b-256 9533da659b98b98dc127a92b86dea29e2a8841eb49c718c5d260337376df741c

See more details on using hashes here.

File details

Details for the file dftd3-1.1.0-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: dftd3-1.1.0-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 2.0 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.10.10

File hashes

Hashes for dftd3-1.1.0-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 a976e8021eb03fbc2d87ed3e5001b9b219c417616d8cf11e8742b585205bd83f
MD5 069c216e98ad85984d9581b5212ac8ec
BLAKE2b-256 c20d7eab6bd57c2394827e963d54fe9cc7b4da417afa2358c8617e48718c8553

See more details on using hashes here.

File details

Details for the file dftd3-1.1.0-cp39-cp39-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for dftd3-1.1.0-cp39-cp39-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 ceacc43d1732e12c875c041788e51a96a6d800f2950d62fd3988a6a160708c86
MD5 eec40fc199fd32b07df3a0305a882eea
BLAKE2b-256 663329ff98c13b00060e395b701bf4fcd641898ba54c18ad519633346906c34f

See more details on using hashes here.

File details

Details for the file dftd3-1.1.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for dftd3-1.1.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 be7c3f5a36547a4e308707d5c6efea66f36aaec27840cba1b590df2dd5ce493d
MD5 2119f984f7b802fd42345ef824e6b338
BLAKE2b-256 4c6ab2e49fa940de6e70a4068c0a70da39137ee7a7f83e7a7987b283e6f68603

See more details on using hashes here.

File details

Details for the file dftd3-1.1.0-cp39-cp39-macosx_12_0_x86_64.whl.

File metadata

File hashes

Hashes for dftd3-1.1.0-cp39-cp39-macosx_12_0_x86_64.whl
Algorithm Hash digest
SHA256 6a0bbbc3cf92caa36a108826b0d2d8b1f50484eb18c03c0ca502a389535b8f62
MD5 529a158505b5c0bbe240dcc5db2649ab
BLAKE2b-256 29f4c76e8df316f36b398909a49b312d521357cbe271dd8d2a03fa9bcae6d9f7

See more details on using hashes here.

File details

Details for the file dftd3-1.1.0-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: dftd3-1.1.0-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 2.0 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.10.10

File hashes

Hashes for dftd3-1.1.0-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 c706d835c1baac54058ddefa310011f62885b71c1f50e57b31bffbb3638dabec
MD5 63a9bc0dfa419128a1f446b5525e8a14
BLAKE2b-256 e5b555d3ea372dd6b1a6c9f9cfbe120b27731e3c417cf3352bafe29be411f56a

See more details on using hashes here.

File details

Details for the file dftd3-1.1.0-cp38-cp38-macosx_12_0_x86_64.whl.

File metadata

File hashes

Hashes for dftd3-1.1.0-cp38-cp38-macosx_12_0_x86_64.whl
Algorithm Hash digest
SHA256 250a60efed0f2d614c9a33084ce723374bbe37386b5b8f44616abe9ee7fe48b9
MD5 df3899b3f624496a064a52b712c9f382
BLAKE2b-256 62aa38e9b7048a3c07828b9c5197ce05ad1564f1ea82db404a765316c31e25ef

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page