Skip to main content

Python API of the DFT-D3 project

Project description

Python interface for the D3 dispersion model. This Python project is targeted at developers who want to interface their project via Python with s-dftd3.

This interface provides access to the C-API of s-dftd3 via the CFFI module. The low-level CFFI interface is available in the dftd3.libdftd3 module and only required for implementing other interfaces. A more pythonic interface is provided in the dftd3.interface module which can be used to build more specific interfaces.

from dftd3.interface import RationalDampingParam, DispersionModel
import numpy as np
numbers = np.array([1, 1, 6, 5, 1, 15, 8, 17, 13, 15, 5, 1, 9, 15, 1, 15])
positions = np.array([  # Coordinates in Bohr
    [+2.79274810283778, +3.82998228828316, -2.79287054959216],
    [-1.43447454186833, +0.43418729987882, +5.53854345129809],
    [-3.26268343665218, -2.50644032426151, -1.56631149351046],
    [+2.14548759959147, -0.88798018953965, -2.24592534506187],
    [-4.30233097423181, -3.93631518670031, -0.48930754109119],
    [+0.06107643564880, -3.82467931731366, -2.22333344469482],
    [+0.41168550401858, +0.58105573172764, +5.56854609916143],
    [+4.41363836635653, +3.92515871809283, +2.57961724984000],
    [+1.33707758998700, +1.40194471661647, +1.97530004949523],
    [+3.08342709834868, +1.72520024666801, -4.42666116106828],
    [-3.02346932078505, +0.04438199934191, -0.27636197425010],
    [+1.11508390868455, -0.97617412809198, +6.25462847718180],
    [+0.61938955433011, +2.17903547389232, -6.21279842416963],
    [-2.67491681346835, +3.00175899761859, +1.05038813614845],
    [-4.13181080289514, -2.34226739863660, -3.44356159392859],
    [+2.85007173009739, -2.64884892757600, +0.71010806424206],
])
model = DispersionModel(numbers, positions)
res = model.get_dispersion(RationalDampingParam(method="pbe0"), grad=False)
print(res.get("energy"))  # Results in atomic units
# => -0.029489232932494884

QCSchema Integration

This Python API natively understands QCSchema and the QCArchive infrastructure. If the QCElemental package is installed the dftd3.qcschema module becomes importable and provides the run_qcschema function.

from dftd3.qcschema import run_qcschema
import qcelemental as qcel
atomic_input = qcel.models.AtomicInput(
    molecule = qcel.models.Molecule(
        symbols = ["O", "H", "H"],
        geometry = [
            0.00000000000000,  0.00000000000000, -0.73578586109551,
            1.44183152868459,  0.00000000000000,  0.36789293054775,
           -1.44183152868459,  0.00000000000000,  0.36789293054775
        ],
    ),
    driver = "energy",
    model = {
        "method": "tpss",
    },
    keywords = {
        "level_hint": "d3bj",
    },
)

atomic_result = run_qcschema(atomic_input)
print(atomic_result.return_result)
# => -0.0004204244108151285

ASE Integration

To integrate with ASE this interface implements an ASE Calculator. The DFTD3 calculator becomes importable if an ASE installation is available.

>>> from ase.build import molecule
>>> from dftd3.ase import DFTD3
>>> atoms = molecule('H2O')
>>> atoms.calc = DFTD3(method="TPSS", damping="d3bj")
>>> atoms.get_potential_energy()
-0.0114416338147162
>>> atoms.calc.set(method="PBE")
{'method': 'PBE'}
>>> atoms.get_potential_energy()
-0.009781913226281063
>>> atoms.get_forces()
array([[-0.00000000e+00 -0.00000000e+00  9.56568982e-05]
       [-0.00000000e+00 -4.06046858e-05 -4.78284491e-05]
       [-0.00000000e+00  4.06046858e-05 -4.78284491e-05]])

To use the DFTD3 calculator as dispersion correction the calculator can be combined using the SumCalculator from the ase.calculators.mixing module.

>>> from ase.build import molecule
>>> from ase.calculators.mixing import SumCalculator
>>> from ase.calculators.nwchem import NWChem
>>> from dftd3.ase import DFTD3
>>> atoms = molecule('H2O')
>>> atoms.calc = SumCalculator([DFTD3(method="PBE", damping="d3bj"), NWChem(xc="PBE")])

For convenience DFTD3 allows to combine itself with another calculator by using the add_calculator method which returns a SumCalculator:

>>> from ase.build import molecule
>>> from ase.calculators.emt import EMT
>>> from dftd4.ase import DFTD3
>>> atoms = molecule("C60")
>>> atoms.calc = DFTD3(method="pbe", damping="d3bj").add_calculator(EMT())
>>> atoms.get_potential_energy()
7.513593999944228
>>> [calc.get_potential_energy() for calc in atoms.calc.calcs]
[-4.850025823367818, 12.363619823312046]

The individual contributions are available by iterating over the list of calculators in calc.calcs. Note that DFTD3 will always place itself as first calculator in the list.

PySCF support

Integration with PySCF is possible by using the dftd3.pyscf module. The module provides a DFTD3Dispersion class to construct a PySCF compatible calculator for evaluating the dispersion energy and gradients.

>>> from pyscf import gto
>>> import dftd3.pyscf as disp
>>> mol = gto.M(
...     atom="""
...          C   -0.189833176  -0.645396435   0.069807761
...          C    1.121636324  -0.354065576   0.439096514
...          C    1.486520953   0.962572632   0.712107225
...          C    0.549329390   1.989209324   0.617868956
...          C   -0.757627135   1.681862630   0.246856908
...          C   -1.138190460   0.370551816  -0.028582325
...          Br  -2.038462778   3.070459841   0.115165429
...          H    1.852935245  -1.146434699   0.514119204
...          H    0.825048723   3.012176989   0.829385472
...          H    2.502259769   1.196433556   1.000317333
...          H   -2.157140187   0.151608161  -0.313181471
...          H   -0.480820487  -1.664983631  -0.142918416
...          S   -4.157443472   5.729584377  -0.878761129
...          H   -4.823791426   4.796089466  -1.563433338
...          C   -2.828338520   5.970593053  -2.091189515
...          H   -2.167577293   6.722356639  -1.668621815
...          H   -2.264954814   5.054835899  -2.240198499
...          H   -3.218524904   6.337447714  -3.035087058
...          """
... )
>>> d3 = disp.DFTD3Dispersion(mol, xc="PW6B95", version="d3bj")
>>> d3.kernel()[0]
array(-0.01009386)
>>> d3.version = "d3zero"  # Change to zero damping
>>> d3.kernel()[0]
array(-0.00574098)
>>> d3.atm = True  # Activate three-body dispersion
>>> d3.kernel()[0]
array(-0.00574289)

To make use of the dispersion correction together with other calculators, the energy method allows to apply a dispersion correction to an existing calculator.

>>> from pyscf import gto, scf
>>> import dftd3.pyscf as disp
>>> mol = gto.M(
...     atom="""
...          O  -1.65542061  -0.12330038   0.00000000
...          O   1.24621244   0.10268870   0.00000000
...          H  -0.70409026   0.03193167   0.00000000
...          H  -2.03867273   0.75372294   0.00000000
...          H   1.57598558  -0.38252146  -0.75856129
...          H   1.57598558  -0.38252146   0.75856129
...          """
... )
>>> grad = disp.energy(scf.RHF(mol)).run().nuc_grad_method()
converged SCF energy = -149.947191000075
>>> g = grad.kernel()
--------------- DFTD3 gradients ---------------
         x                y                z
0 O     0.0171886976     0.0506606246     0.0000000000
1 O     0.0383596853    -0.0459057549     0.0000000000
2 H    -0.0313133974    -0.0125865676    -0.0000000000
3 H     0.0066705789    -0.0380501872     0.0000000000
4 H    -0.0154527822     0.0229409425     0.0215141991
5 H    -0.0154527822     0.0229409425    -0.0215141991
----------------------------------------------

Installing

Conda Version

This project is packaged for the conda package manager and available on the conda-forge channel. To install the conda package manager we recommend the miniforge installer. If the conda-forge channel is not yet enabled, add it to your channels with

conda config --add channels conda-forge

Once the conda-forge channel has been enabled, this project can be installed with:

conda install dftd3-python

Now you are ready to use dftd3, check if you can import it with

>>> import dftd3
>>> from dftd3.libdftd3 import get_api_version
>>> get_api_version()
'1.1.1'

Building the extension module

To perform an out-of-tree build some version of s-dftd3 has to be available on your system and preferably findable by pkg-config. Try to find a s-dftd3 installation you build against first with

pkg-config --modversion s-dftd3

Adjust the PKG_CONFIG_PATH environment variable to include the correct directories to find the installation if necessary.

Using pip

PyPI

This project support installation with pip as an easy way to build the Python API. Precompiled Python wheels for Linux are available on pypi and can be installed with

pip install dftd3

Other platforms need to build from source, the following dependencies are required to do so

  • C compiler to build the C-API and compile the extension module (the compiler name should be exported in the CC environment variable)

  • Python 3.6 or newer

  • The following Python packages are required additionally

Make sure to have your C compiler set to the CC environment variable

export CC=gcc

Install the project with pip

pip install .

If you already have a s-dftd3 installation, e.g. from conda-forge, you can build the Python extension module directly without cloning this repository

pip install "https://github.com/dftd3/simple-dftd3/archive/refs/heads/main.zip#egg=dftd3-python&subdirectory=python"

Using meson

This directory contains a separate meson build file to allow the out-of-tree build of the CFFI extension module. The out-of-tree build requires

  • C compiler to build the C-API and compile the extension module

  • meson version 0.53 or newer

  • a build-system backend, i.e. ninja version 1.7 or newer

  • Python 3.6 or newer with the CFFI package installed

Setup a build with

meson setup _build -Dpython_version=$(which python3)

The Python version can be used to select a different Python version, it defaults to 'python3'. Python 2 is not supported with this project, the Python version key is meant to select between several local Python 3 versions.

Compile the project with

meson compile -C _build

The extension module is now available in _build/dftd3/_libdftd3.*.so. You can install as usual with

meson configure _build --prefix=/path/to/install
meson install -C _build

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

dftd3-1.1.1.tar.gz (643.8 kB view details)

Uploaded Source

Built Distributions

dftd3-1.1.1-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.6 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

dftd3-1.1.1-pp310-pypy310_pp73-macosx_14_0_arm64.whl (1.5 MB view details)

Uploaded PyPy macOS 14.0+ ARM64

dftd3-1.1.1-pp310-pypy310_pp73-macosx_12_0_x86_64.whl (2.1 MB view details)

Uploaded PyPy macOS 12.0+ x86-64

dftd3-1.1.1-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.6 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

dftd3-1.1.1-pp39-pypy39_pp73-macosx_14_0_arm64.whl (1.5 MB view details)

Uploaded PyPy macOS 14.0+ ARM64

dftd3-1.1.1-pp39-pypy39_pp73-macosx_12_0_x86_64.whl (2.1 MB view details)

Uploaded PyPy macOS 12.0+ x86-64

dftd3-1.1.1-pp38-pypy38_pp73-win_amd64.whl (2.0 MB view details)

Uploaded PyPy Windows x86-64

dftd3-1.1.1-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.6 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

dftd3-1.1.1-pp38-pypy38_pp73-macosx_12_0_x86_64.whl (2.1 MB view details)

Uploaded PyPy macOS 12.0+ x86-64

dftd3-1.1.1-cp313-cp313-win_amd64.whl (2.0 MB view details)

Uploaded CPython 3.13 Windows x86-64

dftd3-1.1.1-cp313-cp313-musllinux_1_2_x86_64.whl (2.0 MB view details)

Uploaded CPython 3.13 musllinux: musl 1.2+ x86-64

dftd3-1.1.1-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.13 manylinux: glibc 2.17+ x86-64

dftd3-1.1.1-cp313-cp313-macosx_14_0_arm64.whl (1.5 MB view details)

Uploaded CPython 3.13 macOS 14.0+ ARM64

dftd3-1.1.1-cp313-cp313-macosx_12_0_x86_64.whl (2.1 MB view details)

Uploaded CPython 3.13 macOS 12.0+ x86-64

dftd3-1.1.1-cp312-cp312-win_amd64.whl (2.0 MB view details)

Uploaded CPython 3.12 Windows x86-64

dftd3-1.1.1-cp312-cp312-musllinux_1_2_x86_64.whl (2.0 MB view details)

Uploaded CPython 3.12 musllinux: musl 1.2+ x86-64

dftd3-1.1.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

dftd3-1.1.1-cp312-cp312-macosx_14_0_arm64.whl (1.5 MB view details)

Uploaded CPython 3.12 macOS 14.0+ ARM64

dftd3-1.1.1-cp312-cp312-macosx_12_0_x86_64.whl (2.1 MB view details)

Uploaded CPython 3.12 macOS 12.0+ x86-64

dftd3-1.1.1-cp311-cp311-win_amd64.whl (2.0 MB view details)

Uploaded CPython 3.11 Windows x86-64

dftd3-1.1.1-cp311-cp311-musllinux_1_2_x86_64.whl (2.0 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.2+ x86-64

dftd3-1.1.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

dftd3-1.1.1-cp311-cp311-macosx_14_0_arm64.whl (1.5 MB view details)

Uploaded CPython 3.11 macOS 14.0+ ARM64

dftd3-1.1.1-cp311-cp311-macosx_12_0_x86_64.whl (2.1 MB view details)

Uploaded CPython 3.11 macOS 12.0+ x86-64

dftd3-1.1.1-cp310-cp310-musllinux_1_2_x86_64.whl (2.0 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.2+ x86-64

dftd3-1.1.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

dftd3-1.1.1-cp310-cp310-macosx_14_0_arm64.whl (1.5 MB view details)

Uploaded CPython 3.10 macOS 14.0+ ARM64

dftd3-1.1.1-cp310-cp310-macosx_12_0_x86_64.whl (2.1 MB view details)

Uploaded CPython 3.10 macOS 12.0+ x86-64

dftd3-1.1.1-cp39-cp39-musllinux_1_2_x86_64.whl (2.0 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.2+ x86-64

dftd3-1.1.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

dftd3-1.1.1-cp39-cp39-macosx_14_0_arm64.whl (1.5 MB view details)

Uploaded CPython 3.9 macOS 14.0+ ARM64

dftd3-1.1.1-cp39-cp39-macosx_12_0_x86_64.whl (2.1 MB view details)

Uploaded CPython 3.9 macOS 12.0+ x86-64

dftd3-1.1.1-cp38-cp38-win_amd64.whl (2.0 MB view details)

Uploaded CPython 3.8 Windows x86-64

dftd3-1.1.1-cp38-cp38-musllinux_1_2_x86_64.whl (2.0 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.2+ x86-64

dftd3-1.1.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

dftd3-1.1.1-cp38-cp38-macosx_12_0_x86_64.whl (2.1 MB view details)

Uploaded CPython 3.8 macOS 12.0+ x86-64

File details

Details for the file dftd3-1.1.1.tar.gz.

File metadata

  • Download URL: dftd3-1.1.1.tar.gz
  • Upload date:
  • Size: 643.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.10.10

File hashes

Hashes for dftd3-1.1.1.tar.gz
Algorithm Hash digest
SHA256 3f3edf39bf85cdabff50dcb698c1ccb5b2c3425d718725f6f13c3afd72058532
MD5 32bf6e562cdd7b8c09caeccc4c6bf80d
BLAKE2b-256 9853a67b66ff64e3f339f10ec3406d9fec7360f984267e792028eb48891c03ad

See more details on using hashes here.

File details

Details for the file dftd3-1.1.1-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for dftd3-1.1.1-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 8ca95ef477ebce6d1763aeff59ca1bffd3c054c020084265712e8615f7c60675
MD5 a777ce04312e5dc953fd235aa6a4dd32
BLAKE2b-256 326cdc3346607d2940e8b3b38e9014f4350288c581145b98d3acd0245f694864

See more details on using hashes here.

File details

Details for the file dftd3-1.1.1-pp310-pypy310_pp73-macosx_14_0_arm64.whl.

File metadata

File hashes

Hashes for dftd3-1.1.1-pp310-pypy310_pp73-macosx_14_0_arm64.whl
Algorithm Hash digest
SHA256 01c8c484c13153371dba78b2d3a9da8639915d53d6decf782c54fb9e5f9d1e84
MD5 b54e14d96e8d10b744abe36dea49fa1e
BLAKE2b-256 7523c513df3e935397fc6709ed4f9879751812ee65bb3b1b8f5c28ec0d71ada4

See more details on using hashes here.

File details

Details for the file dftd3-1.1.1-pp310-pypy310_pp73-macosx_12_0_x86_64.whl.

File metadata

File hashes

Hashes for dftd3-1.1.1-pp310-pypy310_pp73-macosx_12_0_x86_64.whl
Algorithm Hash digest
SHA256 bacac7ceea419071ae22e1fd4f206a4d0049bb1c8a62133eafee3f2cddc8cbd7
MD5 e54b7c275a0295940553904a6468cbfa
BLAKE2b-256 cea805b574fb00002488dbc7bb80551e71b3f1729d5ca0198b4df4455cbac21a

See more details on using hashes here.

File details

Details for the file dftd3-1.1.1-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for dftd3-1.1.1-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 f7805eae9da2da33009486fd1f034e2185231b4920296c00fadbe362f49be308
MD5 0be9204717c8fbc82d0f7eda1976470a
BLAKE2b-256 9d5369be60d711f1256e6715480c3d59d189584974898c5954667b1ff644117d

See more details on using hashes here.

File details

Details for the file dftd3-1.1.1-pp39-pypy39_pp73-macosx_14_0_arm64.whl.

File metadata

File hashes

Hashes for dftd3-1.1.1-pp39-pypy39_pp73-macosx_14_0_arm64.whl
Algorithm Hash digest
SHA256 28c1b3c0e32da9b176782d57b4e38fd221f1bd207f64703d74c26719982c08ee
MD5 556175788b449adb52406195dd2c7cb7
BLAKE2b-256 e89c547d391782d97abf57f5cd4e7061904819bbf70a61afd02ee3896631ca29

See more details on using hashes here.

File details

Details for the file dftd3-1.1.1-pp39-pypy39_pp73-macosx_12_0_x86_64.whl.

File metadata

File hashes

Hashes for dftd3-1.1.1-pp39-pypy39_pp73-macosx_12_0_x86_64.whl
Algorithm Hash digest
SHA256 1161e98bf622e95bb19b15ca0e8f4c0d1db8153fdc2c3d9bb2f7833e6e4f18e4
MD5 0e914f7ca9fd28f6dc32e04791d2c5cb
BLAKE2b-256 6a013f9a1ea3e8c20bceef594886d8fae692ebeebf14ecca23c157ca4ef4670e

See more details on using hashes here.

File details

Details for the file dftd3-1.1.1-pp38-pypy38_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for dftd3-1.1.1-pp38-pypy38_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 75e43e8e7dc81478cae48a1156d92587c66f11e44e2d3edb768dc80226765813
MD5 39a572e4f0d8e231a4d64e21f23c7802
BLAKE2b-256 44e88698a9b1289c926b389c64f68a0760313659336013047d8b22c0b1a8b74e

See more details on using hashes here.

File details

Details for the file dftd3-1.1.1-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for dftd3-1.1.1-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 80240af3b4dc692e3ded3b5a9449ba73b6b3ab2be547da2746a58382f3cfe70e
MD5 8e5af3934cae4f2d09941f81430af2f9
BLAKE2b-256 2c24cc8d7f2a0fe47f6bbef4533dfbf62e8277897df3c365da51b4d0f0c3fc9c

See more details on using hashes here.

File details

Details for the file dftd3-1.1.1-pp38-pypy38_pp73-macosx_12_0_x86_64.whl.

File metadata

File hashes

Hashes for dftd3-1.1.1-pp38-pypy38_pp73-macosx_12_0_x86_64.whl
Algorithm Hash digest
SHA256 b4e70f191a0eba2510dad67481ae0eb9efa33e74efa663ff259b0ddac15d0b06
MD5 f25c7b5abc17b33bc6a9751278b46176
BLAKE2b-256 941202d7b65f15f4ba0753fcb7a04b6755f52fdd3ed0eb760ae285b6a315e881

See more details on using hashes here.

File details

Details for the file dftd3-1.1.1-cp313-cp313-win_amd64.whl.

File metadata

  • Download URL: dftd3-1.1.1-cp313-cp313-win_amd64.whl
  • Upload date:
  • Size: 2.0 MB
  • Tags: CPython 3.13, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.10.10

File hashes

Hashes for dftd3-1.1.1-cp313-cp313-win_amd64.whl
Algorithm Hash digest
SHA256 e2f4234dc0899fbe0b33e8dd14b3bc8ddae2fef56192a5229131767193a06167
MD5 586160c63411d6491d90764dab31dd25
BLAKE2b-256 48c79aaee5f6c53189d72c318044e3bb3d21dc84cb77e4e087b92b8c38213a77

See more details on using hashes here.

File details

Details for the file dftd3-1.1.1-cp313-cp313-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for dftd3-1.1.1-cp313-cp313-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 08a155267f0c45898cd02d66efe8bb2c9e013a3430acfb58694e106eda1b69e1
MD5 1a20f922d91da35504a17a35a0bf9e4f
BLAKE2b-256 d1a98f3880aec01c4b753926dac2a2039e22805f75be0bef996209e60e2a02e5

See more details on using hashes here.

File details

Details for the file dftd3-1.1.1-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for dftd3-1.1.1-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 6c7f2ca8dd021a05262978b6d9c87785fccb5e2e164905a1e42d9c82825be7cb
MD5 0efee1450e55ff63bafaf38100ecd337
BLAKE2b-256 9c6a2118b479f463e0cd7c436e2fde135de5cba8b9e0afadc445a2adb23afa7f

See more details on using hashes here.

File details

Details for the file dftd3-1.1.1-cp313-cp313-macosx_14_0_arm64.whl.

File metadata

File hashes

Hashes for dftd3-1.1.1-cp313-cp313-macosx_14_0_arm64.whl
Algorithm Hash digest
SHA256 3eff8f1f8939ed42074ddc7bab20f869abf6f4e3e4fa96741f63c19f8d5c16af
MD5 e0ef7e8d4fff3ef91944088f899ded5b
BLAKE2b-256 9f556d51574e7fb4f2777a904168773a0c030a32aa72cbf48e78f3c10df8b878

See more details on using hashes here.

File details

Details for the file dftd3-1.1.1-cp313-cp313-macosx_12_0_x86_64.whl.

File metadata

File hashes

Hashes for dftd3-1.1.1-cp313-cp313-macosx_12_0_x86_64.whl
Algorithm Hash digest
SHA256 de7611083fc9906bc679e8ef9a1172883e3cfbe81c1044bdd83f595b2127b002
MD5 2dbba88c137529c7cd2756653780b23f
BLAKE2b-256 bc141a183c62a3f5443efb36de432c8b01f5227ad9084847bf2d84629540d258

See more details on using hashes here.

File details

Details for the file dftd3-1.1.1-cp312-cp312-win_amd64.whl.

File metadata

  • Download URL: dftd3-1.1.1-cp312-cp312-win_amd64.whl
  • Upload date:
  • Size: 2.0 MB
  • Tags: CPython 3.12, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.10.10

File hashes

Hashes for dftd3-1.1.1-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 78ba041292398d0430cc888982e3fd63af1071b43dfd62e61ad1c9c2458c6e67
MD5 f82eb6cce17e659c4006f6a5dcd12fc5
BLAKE2b-256 9ce73b1baa950e5ccd0396be5433de8f10a66fa5ffc616847e905bd1f2113485

See more details on using hashes here.

File details

Details for the file dftd3-1.1.1-cp312-cp312-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for dftd3-1.1.1-cp312-cp312-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 253ade431637993d0a76f1ae3991181e65f26ff7087b0f5889c842a9f108d8cc
MD5 52941476949f159f6d3b29eee525dfb4
BLAKE2b-256 101ecfbed68b4400e0bf4c9185307b03754bad4cce8958ae76a11f1c8282af49

See more details on using hashes here.

File details

Details for the file dftd3-1.1.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for dftd3-1.1.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 1294777874adbe06f54053764483324f640b68dffa1813f0d828992e75b14192
MD5 98139b8344398fe6e54eef979a538b13
BLAKE2b-256 e4327d8cbe1a6f0ea29d5a99b4430f65232b65637846baf5c9bad74386cec677

See more details on using hashes here.

File details

Details for the file dftd3-1.1.1-cp312-cp312-macosx_14_0_arm64.whl.

File metadata

File hashes

Hashes for dftd3-1.1.1-cp312-cp312-macosx_14_0_arm64.whl
Algorithm Hash digest
SHA256 c9828de4b9c2c68ee3a97dc3207838bf4b9d525389fcd0f93daf9be1d3ad08db
MD5 0eb809bf9d5327e6663186c8bc4836a0
BLAKE2b-256 4f9f560892ab13915940c5aa020e7399a90e26f144a88bb1b74029126cfba631

See more details on using hashes here.

File details

Details for the file dftd3-1.1.1-cp312-cp312-macosx_12_0_x86_64.whl.

File metadata

File hashes

Hashes for dftd3-1.1.1-cp312-cp312-macosx_12_0_x86_64.whl
Algorithm Hash digest
SHA256 41995900a6ac9e3e80f191145fb0abfa40f20e1d1be895127c0ab362ce6c4f80
MD5 3a58df90a11509c2971704395b768824
BLAKE2b-256 0cd0ff23f8b51e09c32f79b815a0757c4fde8c60c137b46cd7b3aab240755804

See more details on using hashes here.

File details

Details for the file dftd3-1.1.1-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: dftd3-1.1.1-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 2.0 MB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.10.10

File hashes

Hashes for dftd3-1.1.1-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 2b404b2b1a9c7b12c74eeee029a334d0544151f6b8a8dcedffcb292e55273b50
MD5 6cc1c4e4492a7ab28ab326adf9831c74
BLAKE2b-256 e99509d70b0c61a0b5de843ff6e9537cee05580dae5e0d33157a60bdb35b1d9c

See more details on using hashes here.

File details

Details for the file dftd3-1.1.1-cp311-cp311-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for dftd3-1.1.1-cp311-cp311-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 c67fbee07b3631163accef735be01d79695272b6c86d3fd85390a6d3472278f3
MD5 3655bbbd0c94c26dfcf270fdc73152ec
BLAKE2b-256 38a291f31221338d61e5584990f58193cc78a2f9b6f83ff0550e149f1a4e6606

See more details on using hashes here.

File details

Details for the file dftd3-1.1.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for dftd3-1.1.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 71905044c6723d34c5fa61f8b25a2b7754a8d106dd6f04f8e39c2a6b4b2f3ba6
MD5 e8b4c9ec1704fa4feb5c45e75309c260
BLAKE2b-256 ac72df59846daf9f708f3ef8898b7d64bdbe3593a5976b0622e989ae70037764

See more details on using hashes here.

File details

Details for the file dftd3-1.1.1-cp311-cp311-macosx_14_0_arm64.whl.

File metadata

File hashes

Hashes for dftd3-1.1.1-cp311-cp311-macosx_14_0_arm64.whl
Algorithm Hash digest
SHA256 ee138b127d894780087c621a3f0386ff59f3139a5b8ae1e49e4b7ce83446ba84
MD5 5b0ccbc6aee86f4581eff863bd93fdd5
BLAKE2b-256 0f91ced81c3579d0066ba2fffd7192831511d5d9f00d51d7f04f1ef655ede214

See more details on using hashes here.

File details

Details for the file dftd3-1.1.1-cp311-cp311-macosx_12_0_x86_64.whl.

File metadata

File hashes

Hashes for dftd3-1.1.1-cp311-cp311-macosx_12_0_x86_64.whl
Algorithm Hash digest
SHA256 5d04cc0c93b5fe326e935daae7e30658acbdb30d06ff47f1e1b25af5fc8a8afb
MD5 faa13a47024dcc225bc8adc36a0d56ad
BLAKE2b-256 335e42fe12002b2e78a19b98940475228c17238a9ac0e09bffa83801a097889f

See more details on using hashes here.

File details

Details for the file dftd3-1.1.1-cp310-cp310-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for dftd3-1.1.1-cp310-cp310-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 124a4e3b2287c71d50a9ee87745f59ef1f9e2aeda9fa7dfba6eb7e6bd5b7858d
MD5 968732513bbcedb958c34d7b328bc566
BLAKE2b-256 9f6f5aecf62a1ecb0d27f08473b590a2ab88cb3e25fd948036e3f4fc30e814bd

See more details on using hashes here.

File details

Details for the file dftd3-1.1.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for dftd3-1.1.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 243a2878f724a2ad48724c789676d2dfb7daad02e8e63956f0e6242575b7e505
MD5 d2e864b673c108cb4553326aa37bf2a1
BLAKE2b-256 6c5e007a69f60816ba50447f5296e9bb750d4ad557a32aaa953608368ef4958f

See more details on using hashes here.

File details

Details for the file dftd3-1.1.1-cp310-cp310-macosx_14_0_arm64.whl.

File metadata

File hashes

Hashes for dftd3-1.1.1-cp310-cp310-macosx_14_0_arm64.whl
Algorithm Hash digest
SHA256 c97e4099d4673b39c3e15cd84e14b4e51964620c7ab18acec939b2ba8d02647f
MD5 525595f4fe6ad755b6b3f7dc84645ffa
BLAKE2b-256 6ae1f0f058aa22a8bc8e809dc4654102397d297ca8640b595843501c5b70ae09

See more details on using hashes here.

File details

Details for the file dftd3-1.1.1-cp310-cp310-macosx_12_0_x86_64.whl.

File metadata

File hashes

Hashes for dftd3-1.1.1-cp310-cp310-macosx_12_0_x86_64.whl
Algorithm Hash digest
SHA256 c7dd39bce9e9d592177f34444ff65be0119112bb47b3cebf46029c582164d9af
MD5 24b3cae54ae09b9c87cce3d5024585d9
BLAKE2b-256 d2224abf3156374beebd5309465a00b21dbb918b48e7a8f47dea273a6f3cd6c7

See more details on using hashes here.

File details

Details for the file dftd3-1.1.1-cp39-cp39-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for dftd3-1.1.1-cp39-cp39-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 77b496b20e22dfbf723fc22310e4c7036c35d188c44f5c648fdac207cea365b1
MD5 e546a21fd56514d0bf5a00a5c9ac9c4c
BLAKE2b-256 edb9d4fe4850f799122276ed50dabf28f2e14da696fff82c3c54f3f167c20be5

See more details on using hashes here.

File details

Details for the file dftd3-1.1.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for dftd3-1.1.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 c13915d87b3c2ceaa006aeb021db1f0754b89442928a934c488f7f8439b2c756
MD5 83728d8192281893def064cd6eec256f
BLAKE2b-256 624de92903b79b672701c500758d34df4843d99a6cee9f0fcdc91c7a739a2da9

See more details on using hashes here.

File details

Details for the file dftd3-1.1.1-cp39-cp39-macosx_14_0_arm64.whl.

File metadata

File hashes

Hashes for dftd3-1.1.1-cp39-cp39-macosx_14_0_arm64.whl
Algorithm Hash digest
SHA256 6451c08cc07d97e4286bf97e666f122b974647c1358a591448f3cbe7705c7906
MD5 65a93af9f8884782674d8d70db6d8b09
BLAKE2b-256 e4055b587404d7a5c8eaeaa322390eefc2441547d3cdd4ce3b233a0948445242

See more details on using hashes here.

File details

Details for the file dftd3-1.1.1-cp39-cp39-macosx_12_0_x86_64.whl.

File metadata

File hashes

Hashes for dftd3-1.1.1-cp39-cp39-macosx_12_0_x86_64.whl
Algorithm Hash digest
SHA256 cb41ef73fc7b18ed6534823cca2c44ee3ebd51ef597b0a2eabbfcf3b69dda20f
MD5 a8956c7106d6461de4e8621b6e371d2e
BLAKE2b-256 5024cd2d71b4854334dc098c4b839318f7e551aa907a2f281b97ee591c40dc78

See more details on using hashes here.

File details

Details for the file dftd3-1.1.1-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: dftd3-1.1.1-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 2.0 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.10.10

File hashes

Hashes for dftd3-1.1.1-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 7226a2f605c35cc4565441cf24f0fd2a7ab759554bcebe14696d9b6e9d9bfc6b
MD5 1f34b5b5e00091f3f809e76a77700b16
BLAKE2b-256 4c1a8673ea95a534c31878e46d13b910b4244489d1a48217f37d105f8dcf9d3a

See more details on using hashes here.

File details

Details for the file dftd3-1.1.1-cp38-cp38-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for dftd3-1.1.1-cp38-cp38-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 b0873fe60fc91f7d156901103cc9736514e096f56a91b3f0f3bc74c703a8be08
MD5 8a97a6b50b798baf89cf68d0595cf4dd
BLAKE2b-256 ec78267accec6c363a9c19b5b8bfb12047a502fa1e982742eeb24c82e212201f

See more details on using hashes here.

File details

Details for the file dftd3-1.1.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for dftd3-1.1.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 977b5a80e45257409750746e069e4d4ed597172e711122bab12845c9a6932ed0
MD5 3f90ed75586ce8e37665eb53691cdafe
BLAKE2b-256 0d5229fe2a5ea071921d4d8b3902d67c3fa6f86deb5dd53917918acb22c371ea

See more details on using hashes here.

File details

Details for the file dftd3-1.1.1-cp38-cp38-macosx_12_0_x86_64.whl.

File metadata

File hashes

Hashes for dftd3-1.1.1-cp38-cp38-macosx_12_0_x86_64.whl
Algorithm Hash digest
SHA256 16d2ff560ebd3fe7b86b44118719bc8ca88190d00698201d58255878ed87d559
MD5 a7e6e4b219c10ba7846ce92c6c4c682a
BLAKE2b-256 ed9248e9d44e4565c5221c8f19ceeb00391938793120905c71189aa37d04241c

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page